ETUDE ENERGETIQUE, ECONOMIQUE ET ENVIRONNEMENTALE DU TRANSPORT ROUTIER A HORIZON 2040 (E4T 2040)

RAPPORT FINAL

Juin 2022
REMERCIEMENTS

IFPEN :
Anne Bouter
Benoit Chèze
Xavier Guichet
Olivier Guyon
Joris Melgar
Manh Quan N’Guyen
Cyprien Ternel (Chef de Projet)

Comité de suivi et de pilotage ADEME :
Bertrand-Olivier Ducreux
Ariane Rozo

CITATION DE CE RAPPORT

Etude énergétique, économique et environnementale du transport routier à horizon 2040 (E4T 2040).

Cet ouvrage est disponible en ligne https://librairie.ademe.fr/
Toute représentation ou reproduction intégrale ou partielle faite sans le consentement de l’auteur ou de ses ayants droit ou ayants cause est illicite selon le Code de la propriété intellectuelle (art. L 122-4) et constitue une contrefaçon réprimée par le Code pénal. Seules sont autorisées (art. 122-5) les copies ou reproductions strictement réservées à l’usage privé de copiste et non destinées à une utilisation collective, ainsi que les analyses et courtes citations justifiées par le caractère critique, pédagogique ou d’information de l’œuvre à laquelle elles sont incorporées, sous réserve, toutefois, du respect des dispositions des articles L 122-10 à L 122-12 du même Code, relatives à la reproduction par reprographie.

Ce document est diffusé par l’ADEME

ADEME
20, avenue du Grésillé
BP 90 406 | 49004 Angers Cedex 01
Numéro de contrat : 1866C0015

Étude réalisée par IFP Energies Nouvelles pour ce projet financé par l’ADEME

Coordination technique - ADEME : DUCREUX BertrandOlivier
Direction/Service : Direction Villes et Territoires Durables/Service Transports et mobilité
SOMMAIRE

RÉSUMÉ ... 8
ABSTRACT .. 9

1. INTRODUCTION ... 10
1.1. Contexte et objectifs de l'étude .. 10
1.2. Articulation du projet ... 12

2. ANALYSE ENERGETIQUE .. 13
2.1. Modélisation des véhicules ... 13
2.1.1. Segments et motorisations étudiés ... 13
2.1.2. Dimensionnements des véhicules modélisés ... 14
2.1.3. Hypothèses énergétiques et projections .. 17
2.1.4. Définition des masses roulantes ... 20

2.2. Evaluation des consommations énergétiques ... 25
2.2.1. Outils de modélisation énergétique des véhicules .. 25
2.2.2. Estimation des émissions de polluants ... 27
2.2.3. Cycles et usages .. 28
2.2.3.1. Projection des résultats à horizon 2040 ... 33
2.2.4. Etude de sensibilité des principales caractéristiques des véhicules 36

2.3. Conclusions .. 38
2.4. Références .. 38

3. ANALYSE ECONOMIQUE ... 40
3.1. Décomposition des coûts .. 40
3.1.1. Segments et motorisations étudiées .. 40
3.1.2. Structure de coût des véhicules ... 41
3.1.2.1. Coût des motorisations thermiques et électriques 41
3.1.2.2. Coût des batteries ... 41
3.1.3. Autres hypothèses ... 42
3.1.3.1. Courbe de dépréciation des véhicules ... 42
3.1.3.2. Prix des énergies ... 42
3.1.3.3. Maintenance .. 43
3.1.3.4. Assurances .. 44
3.1.3.5. Les aides à l’achat ... 44

3.2. Calcul du TCO ... 44
3.2.1. Méthodologie ... 44
3.2.2. L’outil BEAVER (Bilan Economique et Analytique des VÉhicules Routiers) 45

3.3. Résultats .. 46
3.3.1. Véhicule léger, citadine (segment A) .. 46
3.3.2. Véhicule léger, compacte (segment C) ... 47
3.3.3. Véhicule léger, familiale (segment D) ... 50
3.3.4. Véhicule utilitaire ... 51
3.3.5. Autobus 12m .. 52
3.3.6. Poids lourd 12-19t ... 53
3.3.7. Poids lourds 40-44t ... 55
3.3.8. Deux roues .. 57

3.4. Conclusions .. 57
3.5. Références .. 58

4. ANALYSE ENVIRONNEMENTALE ... 59

4.1. Description .. 59
4.2. Champs de l’étude ... 59
 4.2.1. Définition du système ... 59
 4.2.1.1. Description des véhicules étudiés 59
 4.2.1.1.1. Véhicules particuliers .. 60
 4.2.1.1.2. Bus ... 60
 4.2.1.1.3. Véhicules Utilitaires Légers 60
 4.2.1.1.4. Poids lourd livraison et routier 61
 4.2.1.1.5. Les véhicules à l’horizon 2040 61
 4.2.1.2. Pneus .. 62
 4.2.1.3. Batteries .. 62
 4.2.1.4. Pile à combustible et vecteur énergétique H₂ 62
 4.2.1.4.1. Pile à combustible ... 63
 4.2.1.4.2. Production du vecteur énergétique H₂ 63
 4.2.1.5. Vecteurs énergétiques .. 63
 4.2.1.5.1. Carburants liquides ... 63
 4.2.1.5.2. Carburants gazeux .. 63
 4.2.1.5.3. Electricité .. 64
 4.2.1.5.4. Biocarburants .. 64
 4.2.1.6. Utilisation .. 66
 4.2.1.6.1. Cycles d’utilisation ... 66
 4.2.1.6.2. Emissions à l’échappement 66
 4.2.1.6.3. Emissions hors échappement 66
 4.2.1.7. Fin de vie ... 67
 4.2.1.7.1. Fin de vie véhicules ... 67
 4.2.1.7.2. Fin de vie des pneus .. 67
 4.2.1.7.3. Fin de vie des batteries .. 67
 4.2.2. Unité fonctionnelle .. 68
 4.2.3. Frontières du système ... 68
 4.2.4. Catégories d’impact et indicateurs 69
 4.2.4.1. Indicateurs midpoints ... 69

4.3. Résultats .. 70
 4.3.1. Evaluation des impacts potentiels sur le changement climatique (Climate Change) 70
 4.3.1.1. Segment A ... 70
 4.3.1.2. Segment C ... 72
 4.3.1.3. Bus .. 76
 4.3.1.4. Poids lourd de livraison .. 77
 4.3.1.5. Poids lourd routier .. 77
 4.3.1.6. 2 roues .. 78
 4.3.1.7. VUL ... 79
 4.3.2. Evaluation des impacts potentiels sur la formation d’ozone photochimique (Photochemical ozone formation) pour le segment D .. 79
 4.3.3. Evaluation des impacts potentiels sur l’acidification (Acidification) pour le segment D 80

Etude énergétique, économique et environnemental du transport routier à l’horizon 2040 (E4T2040)
4.3.4. Evaluation des impacts potentiels sur l'eutrophisation aquatique (eutrophication, freshwater) pour le segment D...81
4.3.5. Evaluation des impacts potentiels sur l'eutrophisation terrestre pour le segment D82
4.3.6. Evaluation des impacts potentiels liés aux émissions de particules fines (Particulate matter/Respiratory inorganics) pour le segment D...83
4.3.7. Evaluation des impacts potentiels sur l'épuisement des ressources (abiotic depletion potential) pour le segment D...84
4.3.8. Evaluation des impacts potentiels sur la santé humaine causé par les radiations ionisantes (ionizing radiation, human health)...85

4.4. Conclusions ..86
4.5. Références ..88

5. ANALYSE DU PARC FRANÇAIS A HORIZON 2050..92

5.1. Introduction ...92
5.2. Présentation de la structure du modèle DRIVEE5 ..93
5.2.1. Projection de la demande de transport routier ...94
5.2.1.1. Le stock total de véhicules et les kilomètres parcourus.............................94
5.2.1.2. Loi de survie des véhicules et nouvelles ventes95
5.2.2. Comment déterminer les ventes par type de véhicule dans le futur ? Un modèle de choix discrets emboîte..95
5.2.3. Calcul des impacts environnementaux...96

5.3. Parc VL..97
5.3.1. Présentation des scénarios ..97
5.3.1.1. Les scénarios contextuels...97
5.3.1.1.1. Infrastructures de recharge ..97
5.3.1.1.2. Prix de l'énergie ...98
5.3.1.1.3. Progrès techniques des moteurs thermiques99
5.3.1.2. Les scénarios de politique publique ..99
5.3.1.2.1. Aide à l'achat de véhicules électrifiés ...100
5.3.1.2.2. Taxe carbone ...100
5.3.1.2.3. Taxe sur les produits pétroliers ..101
5.3.1.3. Arbres des Scénarios..102
5.3.2. Illustration du modèle DRIVEE5 par quelques résultats..................................103
5.3.2.1. Comparaison entre le scénario BAU (E.1) et le scénario pro électro-mobilité (C.8.) 103
5.3.2.2. Ventes et stocks ...103
5.3.2.3. Consommation d'énergie et analyse environnementale104
5.3.2.3.1. Comparaison entre scénarios : Focus sur les scénarios du Scénario Contextuel C 105
5.3.2.3.2. Ventes et stocks ...105
5.3.2.3.3. Consommation d'énergie et analyse environnementale106
5.3.2.3.4. L'interdiction des véhicules thermiques en 2035: conséquences sur l'électromobilité et la décarbonation du secteur ...107
5.3.2.3.5. Ventes et stocks ...107
5.3.2.3.6. Analyse environnementale ...108
5.3.2.4. Effet d'une baisse de la demande de véhicules ?108
5.3.2.4.1. Ventes et stocks ...109
5.3.2.4.2. Analyse environnementale ...110
5.3.3. Discussion & conclusions ..110

5.4. Parcs PL..112
5.4.1. Mise en contexte ... 112
 5.4.1.1. Documents de références ... 112
 5.4.1.2. Rappels des objectifs de la SNBC (Extrait rapport 1 du GT sur l’ERS) ... 112
 5.4.1.2.1. Spécificités sur transport de marchandises ... 113
 5.4.1.2.2. Le transport par poids lourds: une stratégie européenne .. 115
 5.4.1.2.3. Etat des lieux sur les différentes filières énergétiques alternatives ... 117
 5.4.2. Hypothèses retenues pour le modèle DRIVE® ... 119
 5.4.2.1. Choix de modélisation .. 119
 5.4.3. Exemple de résultats pour les VUL .. 120
 5.4.4. Discussions & conclusions ... 121

5.5. Références ... 122

6. CONCLUSIONS ET MESSAGES PRINCIPAUX .. 123

7. ANNEXE ... 125

7.1. Table des figures .. 125
RÉSUMÉ

Afin d’analyser les technologies disponibles pour les systèmes de propulsion des véhicules d’aujourd’hui et de demain, IFPEN, dans le cadre d’un projet co-financé par l’ADEME, s’est doté de méthodes et d’outils permettant de réaliser des analyses économiques, environnementales et prospectives du secteur transport. Ces méthodes et outils ont permis d’évaluer les performances économiques, énergétiques et environnementales des technologies véhicules en fonction des conditions d’usage. La diversité des segments du transport routier (véhicule léger, véhicule utilitaire léger, poids lourds, bus et deux roues) et la prise en compte des évolutions technologiques et économiques à un horizon moyen terme (cible 2040) ont été pris en compte dans l’analyse.

Les résultats montrent que les progrès techniques conjugués à la baisse des coûts de solutions électriques (notamment à batterie) vont permettre à ces technologies de pénétrer le marché. D’abord rentables sur les véhicules légers, ces technologies vont peu à peu intégrer le parc des bus et poids lourds, avec une parité économique attendue entre 2025 et 2040. L’Analyse du Cycle de Vie montre qu’avec le mix électrique français les véhicules électriques à batterie présentent des gains très nets d’émissions GES, les émissions liées à la production des batteries ayant tendance à diminuer d’ici 2040 (relocalisation en Europe de leur production à cet horizon). Ce constat est plus contrasté avec les technologies pile à combustible, avec l’hypothèse d’un hydrogène produit à partir d’électrolyseurs alimentés par le mix électrique moyen français. Les autres indicateurs de l’ACV sont globalement en défaveur des solutions pile à combustible et batterie (notamment l’épuisement des ressources abiotiques et la formation d’ozone photochimique).

Enfin l’analyse prospective de l’évolution du parc automobile français à 2050 montre que même dans le cas du scénario le plus favorable à la vente de véhicule électrifié, les objectifs du Green Deal (90% d’émissions de CO2 du parc en 2050 par rapport à 1990) ne sont pas atteints. En effet les émissions de CO2 seront égales en 2050 à 21 Mt. Pour rappel elles étaient de 70 Mt en 1990. Il faut ajouter à ce scénario l’interdiction des ventes de véhicules thermiques en 2035 pour se rapprocher de l’objectif. Dans ce dernier scénario, les émissions de CO2 atteindront 11,4 Mt en 2050. Avec des politiques de soutien à l’autopartage, et/ou l’utilisation accrue des biocarburants (et sans doute un changement du mode de comptabilité du CO2 biogénique), l’objectif du Green Deal serait ainsi atteignable pour le parc. A contrario, dans tous les scénarios étudiés l’objectif fixé récemment par la Commission Européenne (55% de réduction des émissions de CO2 en 2030) semble inatteignable.
ABSTRACT

In order to analyze the technologies available for today's and tomorrow's vehicle propulsion systems, IFPEN, as part of a project co-financed by ADEME, has developed methods and tools to carry out economic, environmental and prospective analyses of the transport sector. These methods and tools have made it possible to evaluate the economic, energy and environmental performance of vehicle technologies according to the conditions of use. The diversity of road transport segments (light vehicles, light commercial vehicles, heavy goods vehicles, buses and two-wheelers) and the consideration of technological and economic developments in the medium term (target 2040) were taken into account in the analysis.

The results show that technical progress combined with the falling costs of electric solutions (particularly battery-powered) will enable these technologies to penetrate the market. Initially profitable for light vehicles, these technologies will gradually be integrated into the bus and heavy goods vehicle fleet, with economic parity expected between 2025 and 2040. The Life Cycle Assessment shows that with the French electricity mix, battery electric vehicles present very interesting benefits in GHG emissions, with emissions linked to the production of batteries tending to decrease by 2040 (relocation of their production to Europe by this date). This observation is more contrasted with fuel cell technologies, with the hypothesis of hydrogen produced from electrolysers supplied by the average French electricity mix. The other LCA indicators are generally unfavorable to the fuel cell and battery solutions (particularly the depletion of abiotic resources and the formation of photochemical ozone).

Finally, the prospective analysis of the evolution of the French car fleet in 2050 shows that even in the case of the most favorable scenario for the sale of electrified vehicles, the objectives of the Green Deal (-90% of CO₂ emissions from the fleet in 2050 compared to 1990) are not achieved. In fact, CO₂ emissions will be equal to 21 Mt in 2050. As a reminder, they were 70 Mt in 1990. To this scenario, we must add a ban on the sale of combustion engines in 2035 to get closer to the objective. In this last scenario, CO₂ emissions will reach 11.4 Mt in 2050. With policies to support car-sharing, and/or increased use of biofuels (and probably a change in the way biogenic CO₂ is accounted for), the Green Deal target would be achievable for the fleet. On the other hand, in all the scenarios studied, the objective recently set by the European Commission (55% reduction in CO₂ emissions in 2030) seems unreachable.
1. Introduction

1.1. Contexte et objectifs de l’étude

La baisse des émissions de CO₂ provenant des véhicules routiers est un élément essentiel et nécessaire pour réduire durablement les émissions de gaz à effet de serre (GES) en France. En effet, 31% des émissions de GES provenaient du seul secteur transport en 2019 (CITEPA, 2021), ce qui en fait le secteur le plus émetteur du pays, loin devant l’agriculture (19%) et le résidentiel tertiaire (17%) (Figure 1). En plus de réduire l’impact climatique, le développement de nouvelles motorisations permet d’améliorer l’impact de la circulation sur la qualité de l’air (particulièrement vrai dans le cas des véhicules électrifiés en ce qui concerne les émissions liées à la circulation), de réduire le coût du carburant pour les utilisateurs, et enfin de diminuer les importations de pétrole.

![Diagram of sectors in 1990 and 2019 showing transport as the largest emitter of GES in France](image)

Figure 1 : Répartition sectorielle des émissions de GES en France en 2019 – source CITEPA (2021)

Les émissions de CO₂ pour les véhicules légers en Europe sont réglementées. Depuis 2021, les nouveaux véhicules vendus par les constructeurs devaient émettre, en moyenne, au maximum 95 g CO₂/km, sous peine de pénalités financières dissuasives (95€ par véhicule et par gramme supplémentaire). Les mêmes orientations sont actuellement prises pour le secteur des poids lourds, à ceci près que la consommation de carburant devient un argument coût encore plus important pour les transporteurs. En ce qui concerne les bus, la chasse au Diesel est déjà bien amorcée puisque plusieurs villes ont dès aujourd’hui adopté des motorisations alternatives (motorisations hybrides, à gaz ou encore électrique). Mais, malgré ces nouvelles réglementations, les émissions de CO₂ du secteur Transport en France ont globalement augmenté, alors que celles des autres secteurs ont diminué depuis 1990 (Figure 2).

![Graph showing the evolution of CO₂ emissions from transport and all other sectors in France](image)

Figure 2 : Evolution des émissions de CO₂ du secteur Transport et de tous les secteurs agrégés en France (base 100 en 1990) – source CITEPA (2021)
La Stratégie Nationale Bas Carbone (SNBC), en cohérence avec l’accord de Paris (2016) et donc de la limitation de l’accroissement des températures à moins de 2°C par rapport à l’ère préindustrielle, fixe la diminution de 40% des émissions de gaz à effet de serre (GES) tout secteur confondu en 2030 par rapport à 1990, et la neutralité carbone en 2050, y compris pour le secteur Transport, voir Figure 3.

Figure 3 : Historique et projection des émissions du secteur des transports entre 1990 et 2050 (en MTCO₂eq) (Ministère de la transition écologique solidaire, 2020)

En plus des objectifs nationaux, l’Europe a fixé de nouveaux objectifs de neutralité carbone via le « Green Deal » en 2050, et un point de passage en 2030 « Fit for 55 » avec une baisse des émissions de CO₂ de 55% par rapport à son niveau de 1990. Ces engagements forts pris par l’Union Européenne demandent la mise en œuvre et le déploiement de technologies pour répondre à la lutte contre le réchauffement climatique. Les futurs véhicules devront donc être développés à l’aide de nouvelles technologies en combinant des évolutions sur le véhicule comme la réduction de la masse, l’amélioration des rendements moteurs, et surtout via l’utilisation de systèmes hybrides électriques et le déploiement de motorisations à zéro émission.

Dans les différents scénarios de transition énergétique envisagés au niveau européen, l’électrification du secteur des transports est une solution largement encouragée et envisagée de prime abord car elle permettrait de réduire complètement les émissions de CO₂ et de polluants locaux en phase d’usage (en « sortie pot d’échappement »). Cette politique contribuerait ainsi, en partie, à l’objectif environnemental de limiter la hausse des températures en dessous de 2°C et permettrait également d’assurer une composante fondamentale de la sécurité énergétique, à savoir la réduction de la dépendance aux énergies fossiles.

L’objectif du projet E4T 2040 est d’aborder la transition énergétique du secteur Transport routier en France avec une approche systémique. Les problématiques de consommation, de coût de possession, d’impacts environnementaux et de vision globale du parc à horizon 2040 sont ainsi toutes traitées. Pour continuer la transition du parc routier français (déjà amorcée, notamment pour les véhicules légers), il est en effet primordial d’étudier toutes les composantes de cette mutation : quel gain environnemental pour quel coût ? Quels leviers économiques mettre en place pour supporter cette transition ? A quel rythme les émissions du parc vont-elles baisser ? Les objectifs européens sont-ils atteignables ?
1.2. Articulation du projet

Les quatre premiers lots sont détaillés sur la Figure 4. Ils seront traités dans l’ordre dans ce rapport :

- Le lot 2 « Analyse Economique » est dédié aux calculs des coûts de possession (TCO) des véhicules en 2020 et 2040.
- Le lot 4 « Modèle de parc 2040 » utilise toutes les sorties des trois précédents lots et les intègre dans un modèle de parc développé par IFPEN, appelé DRIVE®. Le but est de déterminer l’évolution possible du parc routier en France à horizon 2040/2050 selon différents scénarios contextuels.

![Figure 4 : Schéma de l’articulation des lots du projet E4T 2040](image-url)
2. Analyse Énergétique

Le secteur automobile a vu l’apparition de nombreuses technologies de propulsion au cours des dernières années, visant chacune à réduire la consommation énergétique. On peut ainsi citer les véhicules hybrides, électriques à batterie ou bien encore les véhicules électriques embarquant une pile à combustible. Cette multitude d'architectures s'ajoute à une multiplication des vecteurs énergétiques alternatifs prometteurs pour la réduction de l'impact environnemental du secteur, dont le gaz, l'hydrogène et les biocarburants. Cette profusion d’offres technologiques plonge le grand public, les décideurs publics et les acteurs du marché dans une confusion quant à l'identification de solutions pertinentes, d'autant plus que l'intérêt de ces solutions dépend de l'application considérée et de leur usage.

La première phase de l'analyse holistique que vise à atteindre l’étude E4T 2040 consiste à établir les consommations énergétiques de ces différentes solutions technologiques de propulsion, et ce en s’appuyant sur la simulation « système ». La simulation permet en effet de modéliser l'ensemble des véhicules, de les simuler sur des usages réalistes et de projeter leurs évolutions à horizon lointain (améliorations techniques, changement de masse etc.).

Cette partie du rapport a pour objectif de présenter la méthodologie et les hypothèses de modélisation des véhicules actuels et futurs qui ont conduit à l'obtention des consommations et des émissions de polluants locaux. Ces sorties permettent de mener une comparaison énergétique des systèmes de propulsion, et servent à alimenter les phases suivantes de l’étude.

2.1. Modélisation des véhicules

2.1.1. Segments et motorisations étudiés

L'étude E4T couvre l’analyse de nombreux véhicules définis par :

- Leur segment :
 - Véhicules légers (VL) dont citadine, compacte, familiale
 - Véhicule utilitaire (VUL)
 - Poids lourds (PL) dont long routier et livraison
 - Bus urbain
 - 2-roues 125cc

- Leur architecture :
 - Conventional thermique
 - Hybridation légère (« mild hybrid » VMH)
 - Hybridation complète (« full hybrid » VFH)
 - Hybridation rechargeable (« plugin hybrid » PHEV)
 - Tout électrique à batterie (BEV)
 - Pile à combustible (PAC, « fuel cell »)

Il est à noter que le moteur à combustion Hydrogène n’est pas dans le scope de cette étude.

- Leur carburant (les déclinaisons de carburants alternatifs sont traitées dans l’analyse environnementale de l’étude) :
 - Essence (F10)
 - Diesel (B7)
 - Gaz naturel (GNV)
 - Hydrogène (H2)

le poids lourd « long routier ». Les données du « 2 roues » ont été déterminées à partir du réglage du banc dynamométrique imposé par la réglementation pour une masse en ordre de marche de 175 kg. D’autre part, des consommations auxiliaires ont été définies pour chaque segment. Elles se traduisent par une puissance moyenne prélevée sur le groupe motopropulseur des véhicules de façon à alimenter les accessoires. Si le véhicule en question est électrifié alors cette puissance est prélevée sur la batterie ; pour les véhicules conventionnels (« tout-thermique ») cette puissance est prélevée sur le moteur thermique en considérant un rendement alternateur de 65% pour la conversion de l’énergie mécanique en énergie électrique.

<table>
<thead>
<tr>
<th></th>
<th>Masse carcase</th>
<th>S*Cx (produit de la surface frontale [m2] et du coefficient de trainée [-])</th>
<th>Crr (coefficient de résistance au roulement) [kg/t]</th>
<th>Puissance pour la consommation des auxiliaires</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segment A - citadine</td>
<td>653 kg</td>
<td>0.63</td>
<td>7.3</td>
<td>250 W</td>
</tr>
<tr>
<td>Segment C – moyenne gamme</td>
<td>984 kg</td>
<td>0.65</td>
<td>7.8</td>
<td>300 W</td>
</tr>
<tr>
<td>Segment D – haut de gamme</td>
<td>1165 kg</td>
<td>0.64</td>
<td>8.0</td>
<td>350 W</td>
</tr>
<tr>
<td>Segment VUL – utilitaire</td>
<td>1716 kg</td>
<td>1.92</td>
<td>9.1</td>
<td>350 W</td>
</tr>
<tr>
<td>PL livraison</td>
<td>7000 kg (avec remorque)</td>
<td>4.83 (avec remorque)</td>
<td>7.7</td>
<td>9000 W</td>
</tr>
<tr>
<td>PL long routier</td>
<td>12079 kg (avec remorque)</td>
<td>6.30 (avec remorque)</td>
<td>6.3</td>
<td>4000 W</td>
</tr>
<tr>
<td>Bus</td>
<td>9790 kg</td>
<td>6.53</td>
<td>5.7</td>
<td>9000 W</td>
</tr>
<tr>
<td>2 roues 125cc</td>
<td>175 kg (masse en ordre de marche, sans conducteur)</td>
<td>0.50 (avec conducteur)</td>
<td>9</td>
<td>-</td>
</tr>
</tbody>
</table>

Tableau 1 : Caractéristiques des véhicules de référence par application

2.1.2. Dimensionnements des véhicules modélisés

Les déclinaisons d’architectures conservent les caractéristiques du véhicule de référence, seules les masses roulantes diffèrent en fonction des organes composants les architectures. Les dimensionnements des différentes architectures sont explicités dans le Tableau 2. De même que pour les caractéristiques véhicules, ces dimensionnements ne visent pas à reproduire des « jumeaux numériques » de véhicules existants, mais à rendre compte d’ordres de grandeur représentatifs pour les composants de ces applications, afin de permettre la comparaison énergétique des solutions. Ces dimensionnements sont communs aux véhicules des horizons 2020 et 2040, les évolutions modélisées portent sur les efficacités et les densités énergétiques des composants comme explicitées dans la partie suivante.
<table>
<thead>
<tr>
<th>Segment</th>
<th>Architecture</th>
<th>Vecteur</th>
<th>Cylindrée ICE</th>
<th>Puiss ICE</th>
<th>Puiss PAC</th>
<th>Puiss MOT</th>
<th>Capacité BAT</th>
<th>Transmission</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Conventional</td>
<td>E10</td>
<td>1.0l</td>
<td>90 kW</td>
<td>-</td>
<td>-</td>
<td>5 rapports</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Mild hybrid</td>
<td>E10</td>
<td>1.0l</td>
<td>90 kW</td>
<td>20 kW</td>
<td>1 kWh</td>
<td>5 rapports</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Electric</td>
<td>Batterie</td>
<td>-</td>
<td>-</td>
<td>60 kW</td>
<td>24 kWh</td>
<td>Réducteur simple</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Electric</td>
<td>Batterie</td>
<td>Batterie autonomie étendue</td>
<td>-</td>
<td>60 kW</td>
<td>40 kWh</td>
<td>Réducteur simple</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Conventional</td>
<td>E10</td>
<td>1.3l</td>
<td>110 kW</td>
<td>-</td>
<td>6 rapports</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Conventional</td>
<td>GNV</td>
<td>1.3l</td>
<td>110 kW</td>
<td>-</td>
<td>6 rapports</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Conventional</td>
<td>B7</td>
<td>1.6l</td>
<td>88 kW</td>
<td>20 kW</td>
<td>1 kWh</td>
<td>6 rapports</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Mild hybrid</td>
<td>E10</td>
<td>1.3l</td>
<td>110 kW</td>
<td>20 kW</td>
<td>1 kWh</td>
<td>6 rapports</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Mild hybrid</td>
<td>B7</td>
<td>1.6l</td>
<td>88 kW</td>
<td>20 kW</td>
<td>1 kWh</td>
<td>6 rapports</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Full hybrid</td>
<td>E10</td>
<td>1.3l</td>
<td>110 kW</td>
<td>60 kW</td>
<td>10 kWh</td>
<td>6 rapports</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Plug-in hybrid</td>
<td>E10</td>
<td>1.3l</td>
<td>110 kW</td>
<td>60 kW</td>
<td>10 kWh</td>
<td>6 rapports</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Electric</td>
<td>Batterie</td>
<td>-</td>
<td>-</td>
<td>145 kW</td>
<td>40 kWh</td>
<td>Réducteur simple</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Pile à combustible</td>
<td>H2</td>
<td>-</td>
<td>-</td>
<td>90 kW</td>
<td>145 kW</td>
<td>8 kWh</td>
<td>Réducteur simple</td>
</tr>
<tr>
<td>C</td>
<td>Electric</td>
<td>Batterie</td>
<td>Batterie autonomie étendue</td>
<td>-</td>
<td>145 kW</td>
<td>60 kWh</td>
<td>Réducteur simple</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Electric</td>
<td>Batterie</td>
<td>Batterie autonomie étendue</td>
<td>-</td>
<td>145 kW</td>
<td>80 kWh</td>
<td>Réducteur simple</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Conventional</td>
<td>E10</td>
<td>2.0l</td>
<td>140 kW</td>
<td>-</td>
<td>8 rapports</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Conventional</td>
<td>GNV</td>
<td>1.3l</td>
<td>110 kW</td>
<td>-</td>
<td>8 rapports</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Conventional</td>
<td>B7</td>
<td>2.0l</td>
<td>118 kW</td>
<td>-</td>
<td>8 rapports</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Mild hybrid</td>
<td>E10</td>
<td>2.0l</td>
<td>140 kW</td>
<td>20 kW</td>
<td>1 kWh</td>
<td>8 rapports</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Mild hybrid</td>
<td>B7</td>
<td>2.0l</td>
<td>118 kW</td>
<td>20 kW</td>
<td>1 kWh</td>
<td>8 rapports</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Full hybrid</td>
<td>E10</td>
<td>2.0l</td>
<td>140 kW</td>
<td>80 kW</td>
<td>2 kWh</td>
<td>8 rapports</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Plug-in hybrid</td>
<td>E10</td>
<td>2.0l</td>
<td>140 kW</td>
<td>80 kW</td>
<td>12 kWh</td>
<td>8 rapports</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Electric</td>
<td>Batterie</td>
<td>-</td>
<td>-</td>
<td>200 kW</td>
<td>60 kWh</td>
<td>Réducteur simple</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Pile à combustible</td>
<td>H2</td>
<td>-</td>
<td>-</td>
<td>90 kW</td>
<td>145 kW</td>
<td>8 kWh</td>
<td>Réducteur simple</td>
</tr>
<tr>
<td>D</td>
<td>Electric</td>
<td>Batterie</td>
<td>Batterie autonomie étendue</td>
<td>-</td>
<td>200 kW</td>
<td>80 kWh</td>
<td>Réducteur simple</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Electric</td>
<td>Batterie</td>
<td>Batterie autonomie étendue</td>
<td>-</td>
<td>200 kW</td>
<td>100 kWh</td>
<td>Réducteur simple</td>
<td></td>
</tr>
<tr>
<td>2RM</td>
<td>Conventional</td>
<td>E10</td>
<td>125cc</td>
<td>10 kW</td>
<td>-</td>
<td>-</td>
<td>CVT</td>
<td></td>
</tr>
<tr>
<td>2RM</td>
<td>Electric</td>
<td>Batterie</td>
<td>-</td>
<td>-</td>
<td>10 kW</td>
<td>6 kWh</td>
<td>Réducteur simple</td>
<td></td>
</tr>
<tr>
<td>VUL</td>
<td>Conventional</td>
<td>B7</td>
<td>3.0l</td>
<td>127 kW</td>
<td>-</td>
<td>-</td>
<td>6 rapports</td>
<td></td>
</tr>
<tr>
<td>VUL</td>
<td>Conventional</td>
<td>GNV</td>
<td>1.3l</td>
<td>127 kW</td>
<td>-</td>
<td>-</td>
<td>6 rapports</td>
<td></td>
</tr>
<tr>
<td>VUL</td>
<td>Full hybrid</td>
<td>B7</td>
<td>3.0l</td>
<td>127 kW</td>
<td>80 kW</td>
<td>2 kWh</td>
<td>6 rapports</td>
<td></td>
</tr>
<tr>
<td>VUL</td>
<td>Full hybrid</td>
<td>GNV</td>
<td>1.3l</td>
<td>127 kW</td>
<td>80 kW</td>
<td>2 kWh</td>
<td>6 rapports</td>
<td></td>
</tr>
<tr>
<td>VUL</td>
<td>Plug-in hybrid</td>
<td>B7</td>
<td>3.0l</td>
<td>127 kW</td>
<td>80 kW</td>
<td>14 kWh</td>
<td>6 rapports</td>
<td></td>
</tr>
<tr>
<td>VUL</td>
<td>Plug-in hybrid</td>
<td>GNV</td>
<td>1.3l</td>
<td>127 kW</td>
<td>80 kW</td>
<td>14 kWh</td>
<td>6 rapports</td>
<td></td>
</tr>
<tr>
<td>Segment</td>
<td>Architecture</td>
<td>Vecteur</td>
<td>Cylindrée ICE</td>
<td>Puiss ICE</td>
<td>Puiss PAC</td>
<td>Puiss MOT</td>
<td>Capacité BAT</td>
<td>Transmission</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------</td>
<td>---------</td>
<td>---------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>--------------</td>
<td>----------------</td>
</tr>
<tr>
<td>VUL</td>
<td>Pile à combustible</td>
<td>H2</td>
<td>-</td>
<td>-</td>
<td>90 kW</td>
<td>145 kW</td>
<td>8 kWh</td>
<td>Réducteur simple</td>
</tr>
<tr>
<td>VUL</td>
<td>Electric</td>
<td>Batterie</td>
<td>-</td>
<td>-</td>
<td>200 kW</td>
<td>60 kW</td>
<td>80 kWh</td>
<td>Réducteur simple</td>
</tr>
<tr>
<td>VUL</td>
<td>Electric</td>
<td>Batterie</td>
<td>Autonomie étendue</td>
<td>-</td>
<td>200 kW</td>
<td>60 kW</td>
<td>80 kWh</td>
<td>Réducteur simple</td>
</tr>
<tr>
<td>PL</td>
<td>Livraison</td>
<td>Conventionnel</td>
<td>B7</td>
<td>7.2l</td>
<td>225 kW</td>
<td>-</td>
<td>-</td>
<td>9 rapports</td>
</tr>
<tr>
<td>PL</td>
<td>Livraison</td>
<td>Conventionnel</td>
<td>GNV</td>
<td>7.0l</td>
<td>225 kW</td>
<td>-</td>
<td>-</td>
<td>9 rapports</td>
</tr>
<tr>
<td>PL</td>
<td>Livraison</td>
<td>Full hybrid</td>
<td>B7</td>
<td>7.2l</td>
<td>225 kW</td>
<td>120 kW</td>
<td>13 kWh</td>
<td>9 rapports</td>
</tr>
<tr>
<td>PL</td>
<td>Livraison</td>
<td>Full hybrid</td>
<td>GNV</td>
<td>7.0l</td>
<td>225 kW</td>
<td>120 kW</td>
<td>13 kWh</td>
<td>9 rapports</td>
</tr>
<tr>
<td>PL</td>
<td>Livraison</td>
<td>Plugin hybrid</td>
<td>B7</td>
<td>7.2l</td>
<td>225 kW</td>
<td>120 kW</td>
<td>60 kWh</td>
<td>9 rapports</td>
</tr>
<tr>
<td>PL</td>
<td>Livraison</td>
<td>Plugin hybrid</td>
<td>GNV</td>
<td>7.0l</td>
<td>225 kW</td>
<td>120 kW</td>
<td>60 kWh</td>
<td>9 rapports</td>
</tr>
<tr>
<td>PL</td>
<td>Livraison</td>
<td>Pile à combustible</td>
<td>H2</td>
<td>-</td>
<td>180 kW</td>
<td>250 kW</td>
<td>13 kWh</td>
<td>Réducteur simple</td>
</tr>
<tr>
<td>PL</td>
<td>Livraison</td>
<td>Electric</td>
<td>Batterie</td>
<td>-</td>
<td>-</td>
<td>250 kW</td>
<td>130 kWh</td>
<td>Réducteur simple</td>
</tr>
<tr>
<td>PL</td>
<td>Livraison</td>
<td>Electric</td>
<td>Batterie</td>
<td>Autonomie étendue</td>
<td>-</td>
<td>250 kW</td>
<td>240 kWh</td>
<td>Réducteur simple</td>
</tr>
<tr>
<td>PL</td>
<td>Livraison</td>
<td>Electric</td>
<td>Batterie</td>
<td>Autonomie étendue</td>
<td>-</td>
<td>250 kW</td>
<td>340 kWh</td>
<td>Réducteur simple</td>
</tr>
<tr>
<td>Bus</td>
<td>Conventionnel</td>
<td>B7</td>
<td>7.2l</td>
<td>225 kW</td>
<td>-</td>
<td>-</td>
<td>9 rapports</td>
<td></td>
</tr>
<tr>
<td>Bus</td>
<td>Conventionnel</td>
<td>GNV</td>
<td>7.0l</td>
<td>225 kW</td>
<td>-</td>
<td>-</td>
<td>9 rapports</td>
<td></td>
</tr>
<tr>
<td>Bus</td>
<td>Full hybrid</td>
<td>B7</td>
<td>7.2l</td>
<td>225 kW</td>
<td>120 kW</td>
<td>13 kWh</td>
<td>9 rapports</td>
<td></td>
</tr>
<tr>
<td>Bus</td>
<td>Full hybrid</td>
<td>GNV</td>
<td>7.0l</td>
<td>225 kW</td>
<td>120 kW</td>
<td>13 kWh</td>
<td>9 rapports</td>
<td></td>
</tr>
<tr>
<td>Bus</td>
<td>Pile à combustible</td>
<td>H2</td>
<td>-</td>
<td>180 kW</td>
<td>250 kW</td>
<td>13 kWh</td>
<td>Réducteur simple</td>
<td></td>
</tr>
<tr>
<td>Bus</td>
<td>Electric</td>
<td>Batterie</td>
<td>-</td>
<td>-</td>
<td>250 kW</td>
<td>170 kWh</td>
<td>Réducteur simple</td>
<td></td>
</tr>
<tr>
<td>Bus</td>
<td>Electric</td>
<td>Batterie</td>
<td>Autonomie étendue</td>
<td>-</td>
<td>250 kW</td>
<td>340 kWh</td>
<td>Réducteur simple</td>
<td></td>
</tr>
<tr>
<td>PL long routier</td>
<td>Conventionnel</td>
<td>B7</td>
<td>12.8l</td>
<td>410 kW</td>
<td>-</td>
<td>-</td>
<td>12 rapports</td>
<td></td>
</tr>
<tr>
<td>PL long routier</td>
<td>Conventionnel</td>
<td>GNV</td>
<td>12.8l</td>
<td>337 kW</td>
<td>-</td>
<td>-</td>
<td>12 rapports</td>
<td></td>
</tr>
<tr>
<td>PL long routier</td>
<td>Full hybrid</td>
<td>B7</td>
<td>12.8l</td>
<td>410 kW</td>
<td>250 kW</td>
<td>25 kWh</td>
<td>12 rapports</td>
<td></td>
</tr>
<tr>
<td>PL long routier</td>
<td>Full hybrid</td>
<td>GNV</td>
<td>12.8l</td>
<td>337 kW</td>
<td>250 kW</td>
<td>25 kWh</td>
<td>12 rapports</td>
<td></td>
</tr>
<tr>
<td>PL long routier</td>
<td>Plugin hybrid</td>
<td>B7</td>
<td>12.8l</td>
<td>410 kW</td>
<td>250 kW</td>
<td>130 kWh</td>
<td>12 rapports</td>
<td></td>
</tr>
</tbody>
</table>
L’ensemble de ces déclinaisons a conduit à la modélisation d’environ 130 véhicules et au lancement de plus de 500 simulations en fonction des usages retenus pour chaque segment (cf section 2.2.3 Cycles et usages).

2.1.3. Hypothèses énergétiques et projections

Les principales propriétés énergétiques des véhicules modélisés sont explicitées dans cette partie. Le Tableau 3 récapitule les hypothèses de densités choisies pour les véhicules des horizons 2020 et 2040. Ces données permettent notamment de déterminer les masses des composants à partir des dimensionnements explicités dans la partie précédente.

<table>
<thead>
<tr>
<th>Horizon</th>
<th>2020</th>
<th>2040</th>
</tr>
</thead>
<tbody>
<tr>
<td>Densité cellules batterie VFH</td>
<td>170 Wh/kg</td>
<td>200 Wh/kg</td>
</tr>
<tr>
<td>Densité cellules batterie VE - grande capacité > 30 kWh</td>
<td>250 Wh/kg</td>
<td>500 Wh/kg</td>
</tr>
<tr>
<td>Densité Réservoir H2 Wh/kg</td>
<td>1900 Wh/kg</td>
<td>2200 Wh/kg</td>
</tr>
<tr>
<td>Densité de puissance machine électrique</td>
<td>2.5 kW/kg</td>
<td>3 kW/kg</td>
</tr>
<tr>
<td>Densité de puissance machine thermique</td>
<td>Environ 1.3 kW/kg pour les VL selon vecteur et 0.3 kW/kg pour les PL selon application</td>
<td>Réduction 10% (masse moteur et transmission)</td>
</tr>
</tbody>
</table>

Tableau 3 : Densités d’énergie et de puissance des composants électriques

Concernant les masses des batteries (Li-ion), les hypothèses de densités portent sur les cellules qui les composent. Ces hypothèses sont cohérentes avec les feuilles de route de la Commission européenne (Strategic Research Agenda for batteries, 2020). Les chercheurs et les industriels tablent en effet sur l’émergence de technologies telles que les batteries à électrolyte solide qui permettraient de dépasser le seuil des 500 Wh/kg cellulaires dans les prochaines années (Wenzhuo Cao, 2019).

De façon à reconstituer des masses « pack » - intégrant le conditionnement global de la batterie - une analyse des caractéristiques techniques de plusieurs batteries équipant des véhicules sur le marché a permis d’établir une corrélation sur le ratio des masses « pack » et « cellules » en fonction de la capacité énergétique « pack » (Figure 5). Ce ratio est supposé rester le même pour les batteries à l’horizon 2040.
Une évolution des caractéristiques des véhicules est considérée pour la modélisation 2040, avec la prise en compte d’une réduction de 10% de la masse carosse des VL (15% pour les PL) grâce à l’incorporation de métaux ou d’alliages plus légers, d’une réduction de 10% des efforts aérodynamiques exercés sur les VL (20% pour les PL) et d’une réduction de 20% de la résistance au roulement des véhicules. A noter que les évolutions portant sur la masse et le coefficient de trainée aérodynamique sont en pratique dictées par des considérations relatives aux tendances marketing ; le succès des SUV (Sport Utility Vehicle) entraine une stagnation des efforts sur la réduction de la trainée des véhicules, voire une augmentation de la masse observée pour un même segment (ICCT 2016).

<table>
<thead>
<tr>
<th></th>
<th>Essence – 42.66 MJ/kg</th>
<th>Diesel – 42.94 MJ/kg</th>
<th>GNV – 47.50 MJ/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2020</td>
<td>2040</td>
<td>2020</td>
</tr>
<tr>
<td>A</td>
<td>1.01 – 80 kW – 37%</td>
<td>42%</td>
<td>42% hyb</td>
</tr>
<tr>
<td>C</td>
<td>1.31 – 110 kW – 38%</td>
<td>43%</td>
<td>45% hyb</td>
</tr>
<tr>
<td>D</td>
<td>2.01 – 140 kW – 38%</td>
<td>43%</td>
<td>45% hyb</td>
</tr>
<tr>
<td>VUL</td>
<td>\</td>
<td>\</td>
<td>\</td>
</tr>
<tr>
<td>Bus & PL12t</td>
<td>\</td>
<td>\</td>
<td>\</td>
</tr>
<tr>
<td>PL routier</td>
<td>\</td>
<td>\</td>
<td>\</td>
</tr>
</tbody>
</table>

Tableau 4 : Rendements "pics" des moteurs thermiques

Ces rendements « pics » ont été sélectionnés de façon à représenter des rendements représentatifs des technologies. Les projections pour 2040 ne traduisent pas des objectifs de R&D, mais intègrent des considérations économiques et industrielles qui se veulent réalistes vis-à-vis de la pénétration de ces technologies dans le parc roulant français (notamment la prise en compte de la réduction des ressources
allouées à la R&D des moteurs à combustion interne à partir de 2020). D’autre part, une distinction a été introduite pour les moteurs équipant des architectures hybrides : les contraintes sur les faibles charges et faibles régimes étant palliées par la chaine de traction électrique, on suppose une plage de rendement plus large optimisée. La Figure 6 illustre la cartographie de rendement de ce moteur conçu pour les applications hybrides, projetée à horizon 2040. On constate sur cette représentation des rendements d’un moteur thermique, la variabilité de l’efficacité selon les points de fonctionnement – en particulier à faible charge, la dégradation du rendement est importante.

![Figure 6 : Cartographie de rendement moteur thermique, cylindrée 1.3l, applications « hybride », horizon 2040](image)

Les cartographies des machines électriques présentent des rendements nettement supérieurs à ceux observés dans les moteurs à combustion interne. Ces rendements dépassent les 90% sur la quasi-totalité de la cartographe définie en régime de rotation et en couple ; ils atteignent 96% en « cœur » de cartographie. Bien que des progrès soient attendus sur l’efficacité énergétique des machines électriques, nous avons négligé ces gains pour la définition des cartographies de rendement « 2040 » ; l’évolution énergétique de la chaine de traction électrique est introduite au niveau de l’onduleur. En effet la modélisation des architectures électrifées intègre également la prise en compte de l’électronique de puissance entre la source d’énergie et le convertisseur ; ce composant, nécessaire pour l’adaptation des grandeurs électriques aux bornes de la batterie et du moteur, est source de pertes d’énergie. Son rendement est supposé de 90% (constant dans la modélisation) en 2020 et passe à 95% dans les modélisations « 2040 ». Cette hypothèse traduit donc une progression de 5 points de rendement de l’ensemble de la chaine de traction électrique à horizon 2040, dans la transmission de l’énergie de traction vers les roues mais aussi dans la récupération de l’énergie vers la batterie.

Pour les véhicules électrifiés rechargeables, un rendement de charge a été introduit entre le réseau électrique et la batterie. Ce rendement est supposé constant, fixé à 81% pour l’horizon actuel, et à 90% pour l’horizon 2040. En réalité ce rendement de charge semble varier selon les puissances exploitées et selon les conditions climatiques (à basse température, ce rendement peut chuter à 40% - 60% comme le suggèrent les mesures réalisées dans le cadre d’une étude portée par la Commission européenne (Germana Trentadue, 2018). La connaissance de la consommation électrique au niveau du réseau est nécessaire pour les analyses technico-économiques et environnementales menées dans la suite de l’étude E4T 2040.

La définition de l’efficacité des piles à combustible s’appuie sur les données expérimentales recueillies et publiées par le laboratoire du Département de l’Energie des Etats Unis : (Argonne National Laboratory, 2018). L’instrumentation poussée mise en place sur une Toyota Mirai de 2017 a permis d’établir la courbe de rendement de l’ensemble du système « pile à combustible » d’une puissance maximale de 90 kW (intégrant le convertisseur et l’ensemble des composants auxiliaires formant le « balance of plant »). Ce rendement système atteint 63% pour une puissance d’environ 10 kW et se dégrade à haute puissance
pour atteindre 45% à la puissance maximale. Pour l’horizon 2040, cette courbe de rendement a été projetée de façon à obtenir un rendement maximal de 70% - valeur conjecturée par le laboratoire américain Argonne (Argonne National Laboratory, 2018b).

2.1.4. Définition des masses roulantes
Les masses des composants sont déterminées à partir des densités énergétiques retenues pour l’horizon actuel et celles projetées à l’horizon 2040. Ces masses viennent s’additionner à la masse carrosserie ainsi qu’à la masse de chargement appliquée à chaque véhicule pour établir la masse roulante du véhicule, c’est-à-dire la masse simulée sur les différents usages (Figure 7).

Figure 7 : Détermination de la masse roulante véhicule simulée

La masse du chargement a été déterminée en s’inspirant du protocole WLTP pour les véhicules légers de façon à simuler des chargements représentatifs.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>E10</td>
<td>75</td>
<td>75</td>
<td>26</td>
<td>24</td>
<td>Négligée</td>
<td>25</td>
<td>225</td>
</tr>
<tr>
<td>C</td>
<td>E10</td>
<td>120</td>
<td>75</td>
<td>61</td>
<td>34</td>
<td>Négligée</td>
<td>25</td>
<td>315</td>
</tr>
<tr>
<td></td>
<td>B7</td>
<td>120</td>
<td>75</td>
<td>61</td>
<td>34</td>
<td>Négligée</td>
<td>25</td>
<td>315</td>
</tr>
<tr>
<td></td>
<td>GNV</td>
<td>120</td>
<td>75</td>
<td>61</td>
<td>13</td>
<td>30</td>
<td>25</td>
<td>324</td>
</tr>
<tr>
<td></td>
<td>H2 PAC</td>
<td>120</td>
<td>75</td>
<td>61</td>
<td>5</td>
<td>88</td>
<td>25</td>
<td>374</td>
</tr>
<tr>
<td>D</td>
<td>E10</td>
<td>150</td>
<td>75</td>
<td>92</td>
<td>44</td>
<td>Négligée</td>
<td>25</td>
<td>386</td>
</tr>
<tr>
<td></td>
<td>B7</td>
<td>150</td>
<td>75</td>
<td>92</td>
<td>44</td>
<td>Négligée</td>
<td>25</td>
<td>386</td>
</tr>
<tr>
<td></td>
<td>GNV</td>
<td>150</td>
<td>75</td>
<td>92</td>
<td>16</td>
<td>39</td>
<td>25</td>
<td>397</td>
</tr>
<tr>
<td></td>
<td>H2 PAC</td>
<td>150</td>
<td>75</td>
<td>92</td>
<td>5</td>
<td>88</td>
<td>25</td>
<td>435</td>
</tr>
<tr>
<td>VUL</td>
<td>B7</td>
<td>90</td>
<td>75</td>
<td>413</td>
<td>53</td>
<td>Négligée</td>
<td>25</td>
<td>656</td>
</tr>
<tr>
<td></td>
<td>GNV</td>
<td>90</td>
<td>75</td>
<td>413</td>
<td>19</td>
<td>47</td>
<td>25</td>
<td>669</td>
</tr>
<tr>
<td></td>
<td>H2 PAC</td>
<td>90</td>
<td>75</td>
<td>413</td>
<td>5</td>
<td>88</td>
<td>25</td>
<td>696</td>
</tr>
</tbody>
</table>

Tableau 5 : Détermination de la masse de chargement totale pour les VL
Tableau 6 : Détermination de la masse de chargement totale pour PL

Ci-dessous, les Figure 8, Figure 9, Figure 10 et Figure 11 détaillent les masses roulantes utilisées dans les simulations énergétiques des véhicules pour les horizons 2020 et 2040.
Le châssis représente environ 60% de la masse roulante des véhicules légers modélisés. La réduction de la masse des véhicules légers est d’environ 8%. Les réductions les plus importantes pour 2040 sont observées sur les véhicules électriques : 18%, en raison des progrès significatifs attendus sur la densité énergétique des batteries dont la masse représente 20% du véhicule en 2020.
Figure 9: Masses roulantes [kg] des VUL pour 2020 et 2040
Figure 10 : Masses roulantes [kg] des Bus pour 2020 et 2040
L’hypothèse de chargement pour les PL conduit à des masses transportées qui constituent un peu plus de la moitié de la masse roulante. Les progrès sur la réduction des masses des composants des poids lourds sont dilués par la masse du chargement non modifiée entre 2020 et 2040 pour la comparaison des technologies de propulsion. Ces gains offrent la possibilité d’embarquer plus de marchandises et donc d’augmenter le produit « tonne x km » (considération hors périmètre de l’étude).

2.2. Evaluation des consommations énergétiques

2.2.1. Outils de modélisation énergétique des véhicules

Les hypothèses de modélisation des véhicules légers et poids lourds ont été explicitées dans la partie précédente. Ces données énergétiques ont été traduites en tant que paramètres dans l’outil de calcul des consommations énergétiques des véhicules que nous allons décrire ci-après.

Afin de déterminer la consommation énergétique des différents véhicules définis par leur architecture et leur segmentation, des simulations ont été réalisées à l’aide du logiciel Simcenter Amesim™. Les plateformes de simulation s’appuient sur des composants de la librairie “IFP-Drive” co-développés par IFP Energies nouvelles et Siemens PLM Software. Ces modèles retranscrivent la physique de l’ensemble des
composants des groupes motopropulseurs présents dans les véhicules conventionnels (moteur thermique, transmission etc...) et électrifiés (batterie, pile à combustible, machine électrique, électronique de puissance etc...). Un composant dédié aux architectures hybrides (ECMS : Equivalent Consumption Minimization Strategy) permet de déterminer la stratégie optimale de gestion des énergies thermique et électrique afin de minimiser la consommation de carburant. Le modèle ECMS gère par conséquent la loi de passage des rapports de transmissions pour les architectures hybrides. De plus amples détails sur la loi de gestion de l’énergie pour les véhicules hybrides peuvent être obtenus en consultant la publication SAE (Dabadie et al, 2017). A noter que les consommations des véhicules hybrides non rechargeables sont établies à « bilan batterie nulle », c’est-à-dire pour un état de charge initial de la batterie égal à l’état de charge imposé en début de simulation. Pour les hybrides rechargeables électriquement, les consommations à « bilan batterie nulle » et en mode « tout-électrique » (décharge batterie) sont obtenues à l’aide de simulations conditionnées par l’état de charge initial de la batterie ; ces résultats sont ensuite combinés à l’aide des facteurs d’utilisation définis dans le protocole WLTP (UF : Utility factor) afin d’établir le score consommation tel qu’il serait calculé dans la réglementation européenne.

Un exemple de « sketch », i.e. l’assemblage des modèles de composants qui constituent une modélisation de véhicule est illustré en Figure 12. Cette modélisation correspond à l’architecture « parallèle hybride », commune aux véhicules « mild hybrid » et « full hybrid », pour l’ensemble des segments.

![Figure 12 : Exemple de "sketch" de simulateur véhicule pour une architecture hybride parallèle](image)

Ces modèles véhicules ont été validés au cours de plusieurs années de développement en s’appuyant sur les moyens expérimentaux d’IFP Energies nouvelles - à savoir des bancs moteurs thermiques, machines électriques et batteries ainsi que des bancs à rouleaux sur lesquels sont instrumentés les véhicules. Ces moyens permettent également de fournir des données fidèles aux choix technologiques des constructeurs automobiles, notamment en ce qui concerne les cartographies de consommation des véhicules dont les rendements pics choisis ont été explicités précédemment. La validation des résultats du simulateur « pile à combustible » s’est faite à l’aide des données expériméntales mesurées et publiées par le laboratoire américain Argonne. La Figure 13 illustre la fidélité des résultats de la modélisation « pile à combustible » obtenus sur différents cycles de roulage.
Pour couvrir l’ensemble des cas d’étude, 4 « sketchs » ont été développés de façon à modéliser les architectures conventionnelle, hybride – parallèle, tout électrique et pile à combustible. Un pilotage de ces simulateurs Simcenter Amesim™ via le logiciel Matlab™ a été mis en place pour automatiser le paramétrage (jusqu’à 200 paramètres nécessaires pour un véhicule), le lancement des simulations sur différents cycles et la récupération des résultats pour permettre leur analyse. L’ensemble des outils mis en place répond à la problématique de comparaison énergétique de tous les cas d’étude suivant la même méthodologie.

2.2.2. Estimation des émissions de polluants

De façon à établir les niveaux d’émission des polluants atmosphériques réglementés (CO, HC, NOx et particules) associés aux simulations énergétiques des véhicules, l’étude E4T2040 s’est appuyée sur l’outil de calcul COPERT version 5.3.0 (1.A.3.b.iv Road Transport Appendix 4 Emission Factors 2019) dont le développement est assuré par la société Emisia et administré par le Centre Commun de Recherche de l’Union Européenne (CCR ou JRC en anglais). De plus amples informations concernant les modèles peuvent être obtenues en consultant la page suivante : https://www.emisia.com/utilities/copert/

Le modèle Copert présente l’intérêt de couvrir l’ensemble des applications inscrites dans le périmètre de l’étude E4T 2040 (du « 2 roues » au « poids lourd long routier ») et donc d’apporter, pour toutes les technologies et segments visés, une quantification homogène des émissions moyennes de polluants à l’échappement (exprimées en mg/km). Le modèle établit en effet une relation entre la vitesse moyenne (V) sur le cycle d’étude et les émissions (EF), au travers d’une expression dont les coefficients (Alpha, Beta, Gamma, Delta, Epsilon, Zeta, Eta et RF) dépendent des caractéristiques du véhicule: segment, architecture, vecteur énergétique, norme d’homologation (Euro62020+), technologie de post-traitement (GDI+GPF pour essence et DPF+SCR pour diesel), température initiale et du polluant considéré :

\[
EF = (\text{Alpha} \times V^2 + \text{Beta} \times V + \text{Gamma} + \text{Delta} / V) / (\text{Epsilon} \times V^2 + \text{Zeta} \times V + \text{Eta}) \times (1 - RF)
\]

Des hypothèses de réduction des émissions ont été intégrées à l’approche Copert de façon à obtenir des résultats couvrant l’horizon actuel et l’horizon 2040 :

- La projection des NOx issues de motorisations diesel s’appuie sur une évolution du facteur de réduction RF imposé à 90% pour les NOx. Cette hypothèse conduit à une réduction de 66% des émissions NOx diesel 2040 par rapport à 2020
- La réduction pour les autres polluants (hors NOx diesel) a été imposée à 20% à horizon 2040 par rapport à 2020

D’autre part, la méthodologie élaborée par Copert permet également d’estimer les émissions de particules dites « hors échappement », c’est-à-dire qui ne sont pas issues de la combustion de carburant mais issues de la dégradation des pneumatiques, des éléments d’usure du système de freinage et de l’usure de la surface de la route (1.A.3.b.ivii Road tyre and brake wear 2019). La prise en compte des particules dites de « resuspension » est écartée de l’analyse.

Étude énergétique, économique et environnemental du transport routier à l’horizon 2040 (E4T2040) 27
La génération de résultats énergétiques intégrant des émissions moyennes de polluants permet d’alimenter la phase d’analyse des cycles de vie des solutions de motorisation des véhicules dont la méthodologie est décrite dans la suite du rapport.

2.2.3. Cycles et usages

Les cycles de roulage retenus pour l’évaluation énergétique des véhicules visent à rendre compte d’usages représentatifs pour chaque application étudiée. Ces profils de vitesses imposés aux véhicules caractérisent différents types de sollicitation du groupe motopropulseur, notamment les sollicitations dynamiques à faible vitesse moyenneet celles sur des points de fonctionnement stabilisés à haute vitesse. Les cycles utilisés dans les simulations proviennent de différentes sources, selon les applications.

Pour les VL et VUL, 4 cycles ont été utilisés pour caractériser les usages urbains, extra-urbains et autoroutiers de ces applications ;

- Artemis urbain : vitesse moyenne 17.8 km/h sur une distance de 5 km
- Artemis extra urbain : vitesse moyenne 57.5 km/h sur une distance de 17 km
- Inrets autoroute : vitesse moyenne 94.5 km/h sur une distance de 26 km
- WLTC : vitesse moyenne 46.6 km/h sur une distance de 23 km

![Figure 15 : Profils de vitesse pour les VL et VUL](image-url)
Pour les « 2 roues », l’évaluation énergétique a été effectuée sur 2 cycles issus d’enregistrements effectués par l’Ademe en région parisienne et le cycle d’homologation WMTC :
- Enregistrement urbain : vitesse moyenne 25.5 km/h sur une distance de 12 km
- Enregistrement extra urbain : vitesse moyenne 52.2 km/h sur une distance de 26 km
- WMTC : vitesse moyenne 55.5 km/h sur une distance de 28 km

Figure 16 : Profils de vitesse pour les « 2 roues 125cc »

Pour les poids lourds, les cycles utilisés sont issus d’enregistrements appartenant à IFP Energies Nouvelles caractérisant également des usages urbain (pour le poids lourd de livraison), extra urbain et autoroutier :
- Enregistrement urbain : vitesse moyenne 20.6 km/h sur une distance de 8 km
- Enregistrement extra urbain : vitesse moyenne 41.0 km/h sur une distance de 32 km
- Enregistrement autoroutier : vitesse moyenne 80.5 km/h sur une distance de 92 km

Figure 17 : Profils de vitesse pour les poids lourds

Enfin concernant les simulations des bus de ville, l’étude s’est appuyée sur des enregistrements en usage réel appartenant à l’IFP Energies Nouvelles et à l’ADEME, pour les villes de Paris et de Lyon. La Figure 18 illustre le profil de vitesse pour 2 des cycles utilisés démontrant la dynamique importante de ce type de cycles.
- Enregistrement Paris A (noté « RATP » dans certaines parties du rapport) : vitesse moyenne 10.1 km/h sur une distance de 5 km
- Enregistrements Lyon B, C, D et E : ces usages présentent des vitesses moyennes de respectivement 13.5 km/h, 14.4 km/h, 16.1 km/h et de 17.4 km/h sur des distances de 16 km à 24 km

![Diagramme de profils de vitesse](image)

Figure 18 : Profils de vitesse pour les bus de ville

1.1.1. Illustrations des résultats énergétiques

La section suivante présente une partie des résultats énergétiques obtenus à l’aide des outils de modélisation, des hypothèses et de leurs évolutions supposées présentés dans les sections précédentes du rapport. Comme explicité précédemment, la combinaison des applications, architectures, vecteurs, cycles et horizons temporels ont conduit à la simulation de plusieurs centaines de cas d’étude. Ces résultats visent à rendre compte de consommations moyennes représentatives des applications (cycles eu usages), des technologies et des progrès conjecturés afin de permettre une comparaison énergétique, mais aussi économique et environnementale.

1.1.1.1. Comparaison énergétique des architectures

Les graphiques suivants illustrent les consommations, pour l’horizon actuel, exprimées en kWh/100km pour permettre la comparaison des efficacités énergétiques des groupes motopropulseurs selon les vitesses moyennes des cycles d’étude (classées par ordre croissant).

![Consommations énergétiques](image)

Figure 19 : Consommations énergétiques de certains véhicules du segment C en pour les 4 cycles d’étude
La Figure 19 montre la pertinence de l’électrification des groupes motopropulseurs vis-à-vis de la réduction de la consommation énergétique des véhicules légers. En effet, nous constatons 20% de réduction en hybridation légère (*mild hybrid*) et jusqu’à 40% de réduction en hybridation complète (*full hybrid*) par rapport au cas conventionnel en condition urbaine. A noter que les cas conventionnels sont modélisés avec dispositif « *stop & start* » i.e. sans consommation de ralenti pendant les phases d’arrêt ; seules les motorisations essence sont illustrées par souci de clarté. Les gains apportés par l’hybridation des véhicules s’amenuisent à mesure que la vitesse moyenne du cycle augmente ; sur cycle autoroutier, les consommations convergent vers celle du cas conventionnel.

![Figure 20: Consommations énergétiques des véhicules électriques et PAC](image)

L’efficacité des véhicules électriques est élevée : ils consomment environ 2 fois moins d’énergie que les véhicules possédant un moteur thermique (jusqu’à 3 fois moins d’énergie sur cycle urbain) et ce grâce aux rendements élevés de la chaine de traction électrique sur l’ensemble des usages, comme le montre l’agrandissement d’échelle sur la Figure 20. Enfin le véhicule « *pile à combustible* » présente une faible consommation énergétique (*inférieure à 25 kWh/100km*) mais sa consommation tend à augmenter sur cycle à haute vitesse en raison de la dégradation du rendement système de la pile sur les fortes puissances.

Nous retrouvons les mêmes constats sur les résultats du segment VUL en Figure 21, dans laquelle sont illustrées les consommations pour les vecteurs diesel et gaz. Entre les architectures conventionnelles, le meilleur rendement pic considéré pour la cartographie du moteur diesel conduit à une consommation diesel 7% plus faible sur cycle autoroutier que le cas GNV. Pour le segment utilitaire aussi, les véhicules électriques présentent des consommations nettement inférieures aux autres architectures ; le surplus de masse de la version à « autonomie étendue » (*BEV*+), liée à la présence d’une plus grosse batterie (+20 kWh), ne pénalise pas significativement la consommation du véhicule (augmentation constatée de 3.6% en cycle urbain).

![Figure 21: Consommations énergétiques du segment VUL pour les 4 cycles d’étude](image)

Les consommations calculées pour les 2 architectures de « 2 roues » (conventionnel essence et électrique) sont logiquement les plus basses parmi les applications retenues dans l’étude (Figure 22). La version électrique, en condition urbaine, consomme 3.5 kWh/100km, soit 5 fois moins que l’équivalent tout
thermique. Nous pouvons également remarquer que cette consommation est 13 fois plus faible que celle d’un véhicule conventionnel du segment « citadine ».

Les résultats pour les poids lourds de livraison sont présentés en Figure 23. L’intérêt de l’hybridation pour les cycles de type urbain se retrouve à nouveau : jusqu’à 30% de gain observé par rapport à l’architecture conventionnelle. L’efficacité de la chaîne de traction électrique, et notamment la possibilité de récupérer de l’énergie sur les phases de freinage, permet de diviser par 4 la consommation énergétique du PL livraison en condition urbaine par rapport à tout thermique diesel ou gaz (et ce pour les 3 tailles de batterie retenues : BEV = 140kWh, BEV+ = 240kWh et BEV++ = 340kWh).

Les mêmes tendances sont observées pour les consommations des poids lourds « long routier ». Sur les cycles à haute vitesse moyenne, sur lesquelles l’usage de ces PL est destiné, la pertinence de l’hybridation sur un fonctionnement « bilan batterie nulle » est questionnable. En effet, le moteur thermique fonctionne alors exclusivement car les phases de freinage et de relance à faible couple sont quasi inexistantes ; le PL tout thermique fonctionnant déjà sur les points de fonctionnement stabilisés de meilleurs rendements, les consommations moyennes s’en trouvent être très proches : environ 3% d’écart relatif. Le véhicule PAC, quant à lui, présente une consommation énergétique comparable aux versions thermiques en raison de la forte sollicitation de la pile en puissance ; le dimensionnement de la pile à combustible en puissance maximale contribue grandement à l’efficacité du système. Les consommations moyennes des PL électriques sont les plus faibles sur les 3 cycles, et ce même pour les dimensionnements de type « autonomie étendue » :

- 900 kWh pèse 4.6 tonnes (soit une perte de 15% de la capacité maximale de chargement) pour atteindre une autonomie de 540 km
- 1.5 MWh pèse 7.2 tonnes (soit une perte de 24% de la capacité maximale de chargement) pour atteindre une autonomie de 880 km
En ce qui concerne les bus de ville, la Figure 25 présente la comparaison des consommations calculées sur 5 cycles pour lesquels les vitesses moyennes sont relativement faibles (comprises entre 10 km/h et 17 km/h).

Figure 25 : Consommations énergétiques des bus de ville

2.2.3.1. Projection des résultats à horizon 2040

Les graphiques suivants illustrent les consommations énergétiques projetées à horizon 2040. Ces résultats issus de la simulation intègrent les hypothèses d'évolution des caractéristiques des véhicules.

La Figure 26 présente les résultats des consommations énergétiques pour les différentes architectures du segment C sur le cycle WLTC pour les horizons 2020 et 2040. L'évolution des rendements énergétiques, des densités énergétiques et des caractéristiques des véhicules projetées dans cette étude entraînent des réductions moyennes des consommations énergétiques par rapport à 2020 de 16% pour les conventionnels, de 22% pour les hybrides, de 33% pour les électriques et de 29% pour le véhicule PAC. Ces réductions constatées dépendent du cycle d’usage. En effet la dépense énergétique sur un roulage « urbain » est fortement impactée par la masse du véhicule, les progressions attendues sur l’augmentation de la densité énergétique des batteries - couplées à l’amélioration des efficacités énergétiques des composants - permettent d’envisager des réductions significatives des consommations des VE (39% de réduction par rapport à 2020 pour une même capacité batterie, mais seulement 11% pour les véhicules conventionnels sur cycle urbain).
La Figure 27 présente les résultats énergétiques pour le segment C sur WLTC, mais cette fois-ci sous l’angle des émissions de CO2 du réservoir à la roue (« Tank to Wheel » - TtW), ainsi que les cibles de réduction des émissions pour la flotte adoptées par la Commission européenne en janvier 2020 (Regulation EU 2019/631) - actuellement en cours de révision. Les évolutions sur les véhicules équipés d’un moteur thermique conduisent à une diminution moyenne de 19% des émissions CO2 à horizon 2040. Malgré cette réduction, les résultats à horizon 2040 pour les véhicules équipés d’un moteur thermique ne permettent pas de passer sous la barre fixée pour 2030 (qui vise une réduction moyenne des émissions de CO2 de 37,5% par rapport aux émissions de 2021), à l’exception (assez peu probable) du véhicule PHEV en fonctionnement « tout-électrique » en permanence. La réglementation européenne impose aux constructeurs automobiles d’augmenter significativement la part des VE dans le nombre de véhicules neufs vendus.

Les mêmes tendances se retrouvent dans les résultats du VUL sur WLTC de la Figure 28. Les évolutions implantées pour 2040 conduisent à des réductions des consommations énergétiques par rapport à 2020 de 10% pour les architectures conventionnelles, 26% pour les hybrides, 38% pour les électriques et de 31% pour le véhicule PAC.
Les réductions des consommations énergétiques des PL de livraison projetées à horizon 2040 sur le cycle extra urbain sont illustrées sur la Figure 29. Les gains escomptés se situent entre 20 et 30% selon les architectures. Les véhicules électriques présenteraient des consommations de l’ordre de 80 kWh/100km (avec considération du rendement de charge), ce qui correspond à des autonomies de 150 km, 280 km et 400 km pour les 3 tailles de batterie retenues pour la simulation énergétique des VE de cette application, respectivement 130 kWh, 240 kWh et 340 kWh.

La projection des résultats pour les PL « long routier » sur cycle autoroutier est donnée sur la Figure 30. Des progrès significatifs sont observés pour l’ensemble des architectures, les perspectives de réduction de la consommation énergétique sont supérieures à 30%. On peut noter les gains sur les pertes aérodynamiques et le rendement maximal des moteurs thermiques (progression de 6 points de rendement maximal conjecturée) qui sont propices à une amélioration globale de l’efficacité énergétique du véhicule sur les cycles de roulage stabilisé à haute vitesse. Quant aux PL électriques, les évolutions permettent d’accroître de 30% les autonomies des 3 véhicules à batterie modélisés. Le PL BEV++ pourrait ainsi atteindre 1200 km d’autonomie avec un dimensionnement « extrême » de 1.5 MWh embarqués (soit 3.6 tonnes de batterie avec les hypothèses retenues pour 2040).
2.2.4. Étude de sensibilité des principales caractéristiques des véhicules

Enfin, pour conclure sur l’analyse énergétique des véhicules, la partie suivante présente les sensibilités des résultats des simulations énergétiques vis-à-vis des principales hypothèses énergétiques choisies que sont :

- La masse totale simulée
- Le SCx, produit de la surface frontale [m²] et du coefficient de trainée [l]
- La résistance au roulement

- Le rendement maximal du moteur thermique (modification de la cartographie du moteur par homothétie sur le rendement pic)
- Le rendement de la chaine de traction électrique (au travers du rendement de l’électronique de puissance)
- La puissance prélevée pour alimenter les auxiliaires.

Les Tableau 7, Tableau 8 et Tableau 9 présentent les résultats des variations de la consommation, pour un cycle représentatif, des véhicules conventionnel, hybride et électrique pour différentes variations sur les caractéristiques des véhicules, et ce pour les applications « compacte », PL « livraison » et PL « long routier ». Pour de faibles amplitudes, les variations de ces caractéristiques peuvent être considérées comme étant linéaires et additives (à l’exception de la variation sur la puissance auxiliaire).

<table>
<thead>
<tr>
<th>Variations relatives de la consommation par rapport au véhicule de référence 2020 sur cycle WLTC pour le segment C</th>
<th>-10% masse</th>
<th>-10% SCx</th>
<th>-10% résistance roulement</th>
<th>+ 2pts rendement moteur thermique</th>
<th>+ 2pts rendement chaine de traction électrique</th>
<th>-50% puissance auxiliaire (ref 300 W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional E10</td>
<td>4.5 %</td>
<td>2.8 %</td>
<td>2.0 %</td>
<td>4.4 %</td>
<td>-</td>
<td>1.9 %</td>
</tr>
<tr>
<td>Full Hybrid E10</td>
<td>4.3 %</td>
<td>4.2 %</td>
<td>3.1 %</td>
<td>4.8 %</td>
<td>1.5 %</td>
<td>2.0 %</td>
</tr>
<tr>
<td>BEV</td>
<td>5.3 %</td>
<td>4.4 %</td>
<td>3.7 %</td>
<td>-</td>
<td>4.3 %</td>
<td>2.1 %</td>
</tr>
</tbody>
</table>

Tableau 7 : Variations paramétriques pour le segment C sur WLTC
<table>
<thead>
<tr>
<th>Variations relatives de la consommation par rapport au véhicule de référence 2020 sur cycle extra urbain pour le PL « livraison »</th>
<th>-10% masse</th>
<th>-10% SCx</th>
<th>-10% résistance roulement</th>
<th>+ 2.3pts rendement moteur thermique</th>
<th>+ 5pts rendement chaîne de traction électrique</th>
<th>-50% puissance auxiliaire (ref 9 kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventionnel B7</td>
<td>3.7 %</td>
<td>2.2 %</td>
<td>1.8 %</td>
<td>5 %</td>
<td>-</td>
<td>11.4 %</td>
</tr>
<tr>
<td>Full Hybrid B7</td>
<td>3.5 %</td>
<td>2.6 %</td>
<td>2.3 %</td>
<td>5 %</td>
<td>1.6 %</td>
<td>40 %</td>
</tr>
<tr>
<td>BEV</td>
<td>4.1 %</td>
<td>3.4 %</td>
<td>2.9 %</td>
<td>-</td>
<td>6 %</td>
<td>40 %</td>
</tr>
</tbody>
</table>

Tableau 8 : Variations paramétriques pour le segment "PL livraison" sur cycle extra urbain

<table>
<thead>
<tr>
<th>Variations relatives de la consommation par rapport au véhicule de référence 2020 sur cycle extra urbain pour le PL « long routier »</th>
<th>-10% masse</th>
<th>-10% SCx</th>
<th>-10% résistance roulement</th>
<th>+ 2.3pts rendement moteur thermique</th>
<th>+ 5pts rendement chaîne de traction électrique</th>
<th>-50% puissance auxiliaire (ref 4 kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventionnel B7</td>
<td>4.4 %</td>
<td>4 %</td>
<td>3.8 %</td>
<td>4.5 %</td>
<td>-</td>
<td>8.4 %</td>
</tr>
<tr>
<td>Full Hybrid B7</td>
<td>4.7 %</td>
<td>4.2 %</td>
<td>4.1 %</td>
<td>4.6 %</td>
<td>0.2 %</td>
<td>8.5 %</td>
</tr>
<tr>
<td>BEV</td>
<td>5 %</td>
<td>4.5 %</td>
<td>4.7 %</td>
<td>-</td>
<td>5.5 %</td>
<td>9.5 %</td>
</tr>
</tbody>
</table>

Tableau 9 : Variations paramétriques pour le segment "PL long routier" sur cycle autoroutier

L’impact des variations de ces différentes caractéristiques du véhicule est lié au cycle d’étude, jugé représentatif pour les 3 applications. En effet, l’effort de trainée aérodynamique évoluant avec le carré de la vitesse de déplacement du véhicule, l’influence du SCx sur la consommation du véhicule est particulièrement notable sur les cycles à vitesse moyenne élevée. Au contraire, l’influence de la masse est prépondérante sur des conditions de roulage dynamiques.

Etude énergétique, économique et environnemental du transport routier à l’horizon 2040 (E4T2040) 37
2.3. Conclusions

La phase énergétique de l’étude E4T2040 a permis d’établir les dimensionnements des groupes motopropulseurs des 130 véhicules couvrant le cadre de l’étude. Les consommations énergétiques de ces véhicules ont été obtenues grâce à la simulation « système » opérée avec le logiciel Simcenter Amesim et ses modèles dédiés à la simulation de véhicules co-développés par Siemens et l’IFP Energies Nouvelles. Cette méthodologie a permis de calculer des consommations sur une multitude d’usages représentatifs des applications et de projeter les évolutions énergétiques des véhicules à horizon 2040. En plus de la modélisation énergétique, les émissions de polluants locaux des véhicules simulés ont été estimées à l’aide du modèle européen Copert.

La comparaison énergétique des véhicules a mis en évidence l’intérêt de l’électrification des groupes motopropulseurs, en particulier sur les roulages urbains sur lesquels les « mild hybrid » (ou hybride 48V) présentent des consommations 20% plus faibles que l’équivalent tout-thermique, et au moins 40% plus faibles avec les versions « full hybrid ». Cet intérêt s’amenuise sur les cycles à haute vitesse moyenne, notamment pour les applications lourdes. Les résultats des simulations ont placé les architectures tout-électriques comme étant les plus sobres énergétiquement, en raison des rendements moyens élevés de ses composants et la possibilité de récupérer une grande partie de l’énergie cinétique sur les phases de décélération. Ce constat est observable sur l’ensemble des applications étudiées, et pour tous les cycles de conduite. Constat qui s’étend également aux hybrides rechargeables (PHEV) en utilisation « électrique » (autonomie de 50km) En fonctionnement hybride, la consommation énergétique des PHEV dépend grandement de l’usage i.e. la distance parcourue entre 2 recharges électriques de la batterie à partir du réseau : la consommation est alors comprise entre la consommation « tout électrique » et la consommation en mode « maintien de charge » qui elle se rapproche de l’équivalent « full hybrid » mais avec une masse du groupe motopropulseur plus élevée. A noter que les simulations ont été réalisées pour une température extérieure de 20°C, les consommations des VE en conditions froides pourraient être plus élevées en raison d’une dégradation de l’efficacité de la batterie et d’une augmentation significative de la consommation auxiliaire pour réchauffer l’habitatice. Enfin l’architecture « pile à combustible » présente des consommations à m’échafaud entre les versions « full hybrid » et électriques, bénéficiant des avantages de la chaine de traction électrique et du bon rendement du système « pile à combustible » (rendement moyen d’environ 60%, mais qui se dégrade à forte puissance).

Les hypothèses retenues pour 2040 font apparaître une réduction d’au moins 30% des consommations énergétiques des véhicules électriques pour l’ensemble des applications. Cette progression s’explique notamment par la réduction de moitié de la masse batterie pour une même capacité embarquée. Ces évolutions améliorent également la consommation des véhicules hybrides, mais les émissions de CO₂ associées montrent que ces gains ne sont pas suffisants pour passer sous la barre des objectifs de réduction des émissions de CO₂ imposés par l’Union européenne pour 2030, ce qui explique le virage « électrique » pris par les constructeurs automobiles.

L’analyse énergétique des véhicules ne saurait être suffisante pour appréhender les enjeux et les conséquences de la mutation des groupes motopropulseurs du secteur routier. L’ensemble des sorties de la phase énergétique (dimensionnements des chaînes de traction, consommations et émissions) ont permis d’alimenter les phases économique, environnementale et sociétales présentées dans la suite du rapport.

2.4. Références

Strategic Research Agenda for batteries (2020)

Wenzhuo Cao (2019). Batteries with high theoretical energy densities.
3. Analyse Economique

Le changement important et progressif de la mobilité terrestre est aujourd'hui déjà amorcé. Cela concerne les véhicules légers, les véhicules utilitaires, les poids lourds, les bus et même les deux-roues. Il apparaît donc important de voir si cette mutation technologique ne va pas s'accompagner d'une hausse brutale au niveau des coûts. Car la transition énergétique du secteur Transport doit bien sûr venir en premier lieu des utilisateurs de véhicules, qui via leurs futurs achats vont petit à petit modifier la composition du parc français. Cette partie de l'étude porte sur l'analyse TCO (Total Cost of Ownership) de tous ces véhicules à l’horizon 2040.

3.1. Décomposition des coûts

3.1.1. Segments et motorisations étudiées

De nombreux cas sont traités dans l'étude E4T 2040, pour ce qui concerne les VL (Véhicules Légers), les VUL (Véhicules Utilitaires), les Poids Lourds (PL), les bus et enfin les deux-roues. Pour un moyen de transport donné, plusieurs segments sont considérés, chaque segment étant ensuite décomposés en différentes architectures de groupe motopropulseur (GMP) (exemple sur la Figure 31). Pour chaque combinaison, les calculs de TCO sont effectués sur des cycles de conduite différents, allant du cycle urbain congestionné au cycle autoroutier, avec une évaluation spécifique sur le cycle normalisé (WLTC). Enfin, on rappelle que l'étude TCO s'effectue pour deux horizons de temps : 2020 et 2040.

![Diagramme des segments et motorisations](image)

Figure 31 : Exemple des configurations étudiées dans E4T 2040

Toutes les hypothèses (poids, taille, loi de route...) pour chacun de ces véhicules ont été fixées dans le cadre du lot 1 « Analyse énergétique » de cette étude. L'analyse TCO s'appuie ainsi sur les calculs de consommation effectués dans ce lot. De même, les hypothèses concernant la capacité des batteries, la puissance des motorisations (thermique ou électrique) pour chacun des véhicules ont été directement intégrées dans le calcul du TCO.

La matrice de cas élargie permet de prendre en considération la majorité des véhicules qui seront vendus et mis en circulation, sur l’horizon de temps considéré. Les tendances de réduction de la consommation des GMP ont bien été intégrées aux calculs, tout comme l'amélioration de l’aérodynamique des véhicules, les frottements des pneumatiques ainsi que leur allègement.
3.1.2. Structure de coût des véhicules

Afin d’évaluer le prix de vente des différents véhicules de l’étude (y compris en 2040), une approche bottom-up a été utilisée. Le coût des technologies spécifiques de chacun des véhicules a ainsi été ajouté au coût du châssis et de la carrosserie, qui dépendent du segment considéré (voir Figure 32). D’autres postes ont également été modélisés, comme par exemple les frais d’infrastructure, les charges de personnel, les frais de marketing ou du réseau commercial.

Les données utilisées pour établir cette décomposition des coûts proviennent de plusieurs sources :

- Les coûts qui concernent les charges de personnel, d’infrastructures et de marketing sont déduits de différentes publications étudiant les marges des constructeurs automobiles (Rogozhin A., 2010) (FEV, 2013)
- Pour les poids lourds et les bus, une revue bibliographique spécifique a été effectuée. Les informations sur les coûts de ces véhicules ont notamment été tirées de rapports publiés par la Centrale d’Achat du Transport Public (CATP, 2016) ou par l’ADEME (ADEME, 2015)
- Les coûts des composants (turbocompresseur, FAP, SCR…) proviennent là encore de plusieurs sources, mais aussi d’informations d’experts IFFEN. Parmi les documents utilisés on peut citer les rapports de Ricardo (AEA, 2014) ou du BEUC (BEUC, 2016).
- Les autres sources d’information sont indiquées dans les chapitres suivants.

![Figure 32 : Représentation de l’approche bottom-up utilisée pour déterminer le prix de vente des véhicules](image)

3.1.2.1. Coût des motorisations thermiques et électriques

Le coût des moteurs thermiques dépend essentiellement de leur puissance (exprimée en kW), du carburant utilisé (essence, gazole) mais aussi du niveau de technologie embarquée (injection directe ou indirecte, turbocompresseur, système de post-traitement…). Le coût du moteur brut diminue d’aujourd’hui à 2040 pour passer de 23 €/kW à 20 €/kW. A cela il faut donc ajouter les prix des composants techniques et bien sûr le système de post-traitement qui, lui, va voir son coût augmenter. En ce qui concerne les moteurs électriques, la montée en force des véhicules électriques s’accompagne d’une baisse de coût d’ici 2040. Le système global (moteur électrique avec l’électronique de puissance) verra son coût diminuer de 50% environ pour atteindre 8 €/kW.

3.1.2.2. Coût des batteries

Le coût des batteries est un composant important du prix total des véhicules électrifiés, en particulier bien sûr pour les BEV. Les constructeurs font généralement un compromis entre une capacité de batterie élevée (et donc une autonomie importante) et un prix de vente raisonnable, se rapprochant le plus
possible de celui des véhicules thermiques de même segment. Il est aussi démontré que les progrès techniques de ces dernières années devraient encore se poursuivre et continuer à abaisser progressivement le coût des batteries d’ici 2040.

Plusieurs études ont été analysées afin d’établir un coût pour le kWh généré par une batterie en 2020 et en 2040. On peut citer par exemple l’étude de Bloomberg New Energy Finance qui donne un prix inférieur à 60 $/kWh en 2040 (BNEF, 2020), le papier de Nykvist qui annonce un prix inférieur à 50 $/kWh (Nykvist et al. 2019) ou celle de l’European Climate Foundation (2019) qui prévoit un prix du pack batterie plutôt entre 82 et 100 €/kWh, voir Figure 33. Un scénario intermédiaire a été utilisé pour cette étude, avec des coûts de pack batterie s’élevant à 170 €/kWh en 2020 et 70 €/kWh en 2040.

![Figure 33: Scénarios de prix des batteries (pack complet) entre 2020 et 2050 (source : European Climate Foundation, 2019)](image)

3.1.3. Autres hypothèses

3.1.3.1. Courbe de dépréciation des véhicules

L’approche TCO prend en considération la revente du véhicule par son propriétaire. En effet une analyse de sensibilité sur la durée de possession du véhicule est également réalisée dans le cadre de cette étude pour voir son impact sur le TCO global.

Il est très délicat d’utiliser une seule courbe de dépréciation pour l’ensemble des véhicules légers et utilitaires. Plusieurs sources bibliographiques ont été analysées afin d’établir la courbe la plus représentative possible entre les différentes motorisations et segments. En effet, les progrès techniques sur les batteries étant importants, la valeur résiduelle d’un VE baisse un peu plus vite que ses équivalents thermiques. Pour établir la courbe de dépréciation des véhicules électrifiés, nous nous sommes appuyés sur les études de l’ANL (ANL, 2016) et d’Element Energy (BEUC, 2016). Ensuite nous avons ramené la dévaluation des véhicules électriques égale à celle des thermiques à partir de 2030, une fois que la technologie aura pénétré le marché.

3.1.3.2. Prix des énergies

Dans le calcul du TCO, la consommation de carburant (ou d’électricité) représente un poste très important. Il convient donc de faire des hypothèses sur le prix du litre d’essence, de gazole, du kilogramme de GNV ou d’hydrogène et sur le prix du MWh électrique de 2020 à 2050. L’évolution du prix des carburants fossiles à l’horizon 2050 prend en compte l’évolution du prix du brut, l’augmentation de la taxe carbone et le réalignement des fiscalités essence et gazole. Toutes les précisions de ces hypothèses sont données un peu plus loin dans le rapport, chapitre 5.3.1. En ce qui concerne le prix de l’électricité, nous postulons une hausse d’ici 2050 pour atteindre un prix de 200 €/MWh (voir la Figure 34). On rappelle qu’il s’agit ici de prix final correspondant à celui payé par l’utilisateur, et non de coût de production. Enfin, au sujet de l’hydrogène, l’analyse de plusieurs études donne un prix à la station autour de 4€/kg en 2050.
On peut par exemple citer le tout récent rapport de RTE qui donne un prix de l’hydrogène vert à 3.6€/kg en 2050 (RTE, 2021).

Pour les motorisations gaz, on considère qu’en 2020 seul du 100% GNV est disponible à la pompe, tandis qu’en 2040 ce sera du 100% bioGNV. Le prix du GNV subit entre 2020 et 2040 une hausse de 35%. Pour le bioGNV, plusieurs études ont été utilisées afin de déterminer son prix à la pompe en 2040. On peut citer le document du Ministère sur la Programmation Pluriannuelle de l’Énergie (PPE, 2019) ou un rapport d’ENEA (ENEA, 2018). Un coût de production de 60€/MWh en 2040 semble être un objectif, ce qui donnerait un prix à la pompe de 85€/MWh, soit 1.15€/kg. Cette valeur, à la date de parution de ce rapport (2022) et l’envolée du prix du gaz, peut paraître finalement optimiste. Il faut donc regarder les graphiques de cette partie comme étant le potentiel maximal atteignable par le bioGNV en termes de coût.

Enfin, on rappelle que pour les poids lourds et bus, des carburants avec une taxe plus faibles sont considérés.

![Evolution du prix des énergies à la pompe](image1)

Figure 34 : Evolution du prix des particuliers dans le calcul du TCO (en euro constant – prix à la pompe)

3.1.3.3. Maintenance

Les frais de maintenance sont annualisés et dépendent à la fois du segment, de la motorisation et du kilométrage annuel de chacun des véhicules. Plusieurs sources bibliographiques ont été utilisées, comme par exemple la publication du BEUC (BEUC, 2016) ou des informations de la revue (La Tribune Auto, s.d.). A titre d’exemple, voici quelques valeurs prises pour le segment C en 2020 :

<table>
<thead>
<tr>
<th>Motorisation</th>
<th>Essence</th>
<th>Diesel</th>
<th>Mild Hybrid Essence</th>
<th>Full Hybrid Essence</th>
<th>Electrique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coût de maintenance (€/an)</td>
<td>500</td>
<td>600</td>
<td>500</td>
<td>400</td>
<td>300</td>
</tr>
</tbody>
</table>

Tableau 10 : Coût de maintenance annuel d’un véhicule de segment C

- **Cas particulier des batteries pour les VE**

En ce qui concerne les VL et VUL, le coût de maintenance ne prend pas en compte le changement de batterie durant la vie du véhicule. En effet, le remplacement de la batterie intervient généralement après 10 ans de possession d’après les premiers retours des constructeurs. Les propriétaires qui gardent leur véhicule moins longtemps (la majorité des cas) n’ont donc pas à payer les frais inhérents au remplacement d’une batterie. Cependant cela participe à faire baisser un peu plus la valeur résiduelle.

Pour les bus et poids lourds, le point de vue est différent. Ce sont des véhicules qui ont une durée de vie et un kilométrage annuel importants, et donc la batterie est plus régulièrement renouvelée. Par
conséquent, il est judicieux d’intégrer les frais de remplacement d’une batterie dans les coûts de maintenance annualisés. Même raisonnement pour la pile à combustible.

- Cas particulier des PL et bus

L’étude bibliographique a permis de différencier les coûts de maintenance pour les PL et les bus (CATP, 2016) (Ricardo, 2017). Ces coûts sont généralement donnés en €/km, et pas en €/an comme pour les VL. Voici les coûts retenus pour l’étude:

<table>
<thead>
<tr>
<th>Motorisation</th>
<th>Diesel</th>
<th>Full Hybrid Diesel</th>
<th>Electrique</th>
<th>Fuel Cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus</td>
<td>0.28</td>
<td>0.3</td>
<td>0.25</td>
<td>0.35</td>
</tr>
<tr>
<td>PL 12 t</td>
<td>0.06</td>
<td>0.07</td>
<td>0.05</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Tableau 11 : Coût de maintenance au kilomètre des bus et poids lourds 12 tonnes (€/km)

3.1.3.4. Assurances

La prime d’assurance dépend du segment, de la motorisation et, pour les VL et VUL, du bonus éventuel du propriétaire (pris à 20% pour les simulations). Les valeurs utilisées dans les simulations proviennent là encore de différentes sources bibliographiques. Les sources européennes et françaises ont été privilégiées.

Pour les poids lourds, la prime d’assurance est fixée à 1,5% du prix annuel de vente neuf. Pour les bus, nous n’avons pas considéré de frais pour l’assurance, car dépendants de nombreux paramètres (nombre de lignes, de bus) et négociés pour l’ensemble d’une flotte par les exploitants.

3.1.3.5. Les aides à l’achat

Des hypothèses ont été prises sur les aides à l’achat de véhicules électrifiés neufs uniquement pour 2020. Les montants officiels d’aide à l’achat ont été retenus pour le cas de référence (3000€ ou 7000€ pour un véhicule électrique, 2000€ pour un PHEV, et 7000€ pour un véhicule hydrogène). Il y a également les aides à l’achat pour les bus et poids lourds (50 000€). En 2040 il n’y a plus aucune aide dans notre modèle. Il est à noter que nous n’avons pas utilisé de malus pour les véhicules thermiques dans cette étude.

3.2. Calcul du TCO

3.2.1. Méthodologie

Le calcul économique s’effectue sur la vie du véhicule (avant sa revente ou sa destruction) en quatre étapes successives (voir Figure 35).

Figure 35 : Détails des étapes de calcul pour arriver au TCO
Etape 1 : on définit pour chaque segment la configuration de référence, c’est-à-dire la motorisation thermique la plus répandue sur le marché (essence pour le segment A, Diesel pour le segment C etc.). C’est en effet pour cette configuration que les informations requises sont les plus disponibles. On se focalise essentiellement sur les constructeurs moyenne gamme (Renault, Toyota, Citroën …). Une fois connu le prix de vente, on décompose via une approche bottom-up les coûts de fabrication des composants ainsi que les charges indirectes. Il est à noter qu’une analyse bibliographique approfondie a permis de valider les prix véhicules 2020, notamment en ce qui concerne les bus ou les poids lourds, pour lesquels les prix d’achat sont rarement répertoriés sur le web. On peut citer par exemple les études de la SIA (SIA, 2019), de l’ADEME (ADEME, 2019), de l’Hydrogen Council (Hydrogen Council, 2020) ou encore Bloomberg (BNEF, 2020).

Etape 2 : les autres configurations (motorisations alternatives) sont étudiées une à une en observant les principales différences avec la configuration de référence (puissance, batterie, boîte de vitesse …). On identifie ainsi les postes de coûts changeants et on établit un chiffrage pour 2020.

Etape 4 : On effectue un calcul actualisé (TCO) en intégrant l’ensemble des coûts liés à l’opération, la maintenance et la fin de vie des véhicules.

La dernière étape est le calcul du TCO, selon la formule suivante :

$$\text{Coût de revient} = \frac{\text{Investissement initial} + \sum \text{Dépenses actualisées}}{\sum \text{kilomètres annuels actualisés} \times \text{km}} + \sum \text{kilomètres annuels par technologie}$$

Le taux d’actualisation pour le calcul du TCO est de 5%.

3.2.2. L’outil BEAVER (Bilan Economic et Analytique des VEhicles Routiers)

Le calcul du TCO n’est pas obtenu au moyen d’un outil technique. Il s’agit d’un outil économique dont la pertinence repose sur une adaptation permanente à son objet, tout au long de sa durée de vie. Par conséquent, il se doit d’être suivi et évalué régulièrement. Un outil, Beaver, réalisé sous Excel, a ainsi été développé pour traiter les nombreux cas de l’étude (segments, motorisations…) et effectuer de nombreuses études de sensibilité (scénarios de prix des énergies, dimensionnement des capacités de batterie, cycles de conduite…).

- **Sorties de l’outil BEAVER**

Le calcul du TCO par BEAVER permet :
- De comparer les résultats des différents véhicules dans une même configuration (un segment, un usage, un horizon de temps et un scénario de prix des énergies)
- Pour un même véhicule de comparer ses bilans économique et énergétique selon :
 - L’usage (cycle de conduite) et l’horizon de temps (2020 ou 2040)
 - L’usage et le scénario de prix des énergies (prix bas, prix hauts)
Par ailleurs, l’utilisation du modèle permet également d’évaluer :

- L’analyse de l’impact du cycle de conduite sur le TCO
- Le bilan de l’utilisation des véhicules sur plusieurs années, la longueur de la période étant paramétrable
- Le bilan après revente du véhicule (fonction de la valeur de revente)
- La visualisation de l’impact du kilométrage total effectué par les véhicules
- La visualisation sur le bilan économique de l’impact des prix des énergies.

3.3. Résultats

3.3.1. Véhicule léger, citadine (segment A)

Peu de motorisations ont été comparées pour ce segment de véhicule. En effet, les offres en motorisations PHEV ou PAC n’existent pas aujourd’hui et ont peu de chance de voir le jour à moyen terme. Aujourd’hui les constructeurs réduisent leur offre sur les véhicules type citadine à une technologie thermique essence, une hybridation légère 48V essence, et bien sûr une motorisation électrique à batterie. Le cas « véhicule électrique abordable » a été choisi pour ce segment, c’est-à-dire que les batteries ont des capacités de 22 kWh en 2020 (référence Renault Twingo ZE) et 40 kWh en 2040 (Figure 36).

![Image de la figure 36](image)

Figure 36 : TCO d’un véhicule type citadine en 2021 selon le cycle de conduite urbain ou WLTC

![Image de la figure 37](image)

Figure 37 : Analyse de sensibilité sur le kilométrage annuel en 2020 (cycle WLTC)

D’après les résultats TCO, dès 2020 une citadine électrique pouvait être plus avantageuse qu’une thermique ou MildHybrid, à condition d’avoir une batterie de faible capacité (ici Renault Twingo électrique avec 22 kWh). Le gain est même très important : 21% pour le cas urbain.
Figure 38 : TCO d’un véhicule type citadine en 2020 et en 2040 – cycle WLTC

En 2040, malgré les progrès techniques, le véhicule électrique sera plus cher à l’achat qu’en 2020 (Figure 38), cela étant principalement dû à l’arrêt des aides à l’achat et à l’augmentation de la capacité (de 22 à 40 kWh). Cependant les postes « énergie » et « maintenance » étant plus faibles que pour la solution thermique ou MildHybrid, le TCO sera finalement beaucoup plus avantageux (gain de 11%).

3.3.2. Véhicule léger, compacte (segment C)

Pour ce segment de véhicule, beaucoup plus de motorisations ont été considérées pour 2020 et 2040. En plus d’une motorisation 100% thermique essence, trois niveaux d’hybridation et deux véhicules électriques (avec deux capacités de batterie) ont été analysés. On considère ici 10 ans de possession (et pas de changement de batterie pour les VE). Les résultats TCO montrent que le VE possédant une batterie de 40 kWh (référence Nissan Leaf) est la meilleure solution en 2020 (Figure 39). L’aide à l’achat conséquente et les faibles coûts « énergie », « assurances » et « maintenance » jouent en sa faveur. En revanche, le VE à autonomie étendue nécessite un investissement beaucoup plus conséquent (véhicule plus cher et haut de gamme, prime à l’achat divisée par deux). Cela en fait la solution la plus chère d’un point de vue TCO. Avec 12500 km/an, le surcoût à l’achat des motorisations Full-Hybrid et PHEV n’est pas compensé par la réduction de la consommation. Cette situation change pour le PHEV lorsque le kilométrage augmente (Figure 40).
En 2040, on peut observer un nivelllement des TCO (Figure 41). La solution « électrique abordable » a volontairement été écartée car le progrès technique des batteries aidant, la solution d’une capacité de batterie autour de 80 kWh devrait se généraliser. En contrepartie la solution Pile A Combustible (FCEV) a été ajoutée. Et sans aide à l’achat, cette solution nécessite un investissement important. Heureusement le prix à la pompe de l’hydrogène va fortement diminuer pour atteindre 6€/kg en 2040 et 4€/kg en 2050. On remarque d’ailleurs que le poste de dépense lié à l’énergie est plus faible que celui des motorisations thermiques ou hybrides.

Finalement, la solution hybride rechargeable apparaît comme le meilleur choix. Cette motorisation bénéficie de la future baisse des prix des batterie et permet une consommation de carburant (et donc un coût « énergie ») faible. Il est à noter que les écarts de TCO sont relativement faibles entre les différentes motorisation (excepté la PAC en légère retrait). Il est donc difficile ici de tirer une grande conclusion pour 2040, car les résultats vont être très sensibles à l’usage du véhicule (kilométrage annuel, durée de possession).

La Figure 42 montre l’évolution des TCO de 2020 à 2040, et comme pressenti avec les résultats précédents, les solutions semblent se rejoindre en 2040. La hausse du TCO des thermiques/hybrides non rechargeables se conjugue avec la baisse des TCO des véhicules électriques rechargeables (BEV ou PHEV).
Sans rupture technologique, le segment C électrique à grande autonomie ne sera pas rentable avant 2035 environ, sans prime à l’achat (appliquée uniquement en 2020). D’ici là les VE à plus faible capacité de batterie seront à privilégier. C’est ce que montre le Tableau 12, qui compare les TCO d’une motorisation essence avec un VE de batterie 80 kWh. Pour rendre le VE rentable à court terme, il faut soit augmenter le kilométrage annuel, soit faire en sorte que les coûts de production des batteries passent sous la barre des 100 €/kWh.

<table>
<thead>
<tr>
<th>Prix batterie (€/kWh)</th>
<th>7500</th>
<th>10000</th>
<th>12500</th>
<th>15000</th>
<th>17500</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>3970</td>
<td>2280</td>
<td>591</td>
<td>-1099</td>
<td>-2789</td>
</tr>
<tr>
<td>100</td>
<td>7395</td>
<td>5705</td>
<td>4015</td>
<td>2325</td>
<td>635</td>
</tr>
<tr>
<td>125</td>
<td>10810</td>
<td>9120</td>
<td>7431</td>
<td>5741</td>
<td>4051</td>
</tr>
<tr>
<td>150</td>
<td>14235</td>
<td>12545</td>
<td>10856</td>
<td>9166</td>
<td>7476</td>
</tr>
<tr>
<td>175</td>
<td>17686</td>
<td>15996</td>
<td>14307</td>
<td>12617</td>
<td>10927</td>
</tr>
</tbody>
</table>

Tableau 12 : Écart de TCO (en €) entre un segment C électrique avec une batterie de 80 kWh et une motorisation Essence (écart négatif : avantage au BEV). 12 ans de possession. 3000€ de prime à l’achat pour le VE.

Analyse de sensibilité sur les prix de l’énergie

Une analyse TCO sur 2040 nécessite de faire des hypothèses à long terme sur de nombreux paramètres. L’un de ces paramètres est assez critique pour la solution PAC : il s’agit du prix de l’hydrogène (obtenu par électrolyse de l’eau dans cette étude). Une analyse de sensibilité sur le prix des énergies a été menée pour l’année 2040 (Figure 43). On a ainsi fait varier de -20% à +20% le prix de chaque vecteur énergétique (essence, électricité, hydrogène).

On remarque que même avec un prix à la pompe de l’hydrogène plus faible (-20% soit 4.8 €/kg en 2040 au lieu de 6 €/kg) le Segment C avec pile à combustible hydrogène (FCEV) a des difficultés à être compétitif en 2040. En effet, la décomposition du TCO montre qu’au final la partie « énergie » n’est pas la plus importante. C’est surtout l’investissement (prix d’achat du véhicule moins sa revente) qui impacte majoritairement le TCO. Avec nos hypothèses le prix d’achat d’un véhicule de segment C avec technologie PAC est de 37 000€ en 2040 (en euro constant). Pour être compétitif, le prix d’achat doit être encore plus bas et se rapprocher de celui d’un véhicule électrique à batterie. Pour que ce soit le cas et en utilisant ces hypothèses, cela reviendrait à un coût de PAC sous les 60 €/kW en 2040.
Figure 43 : Analyse de sensibilité sur les prix des vecteurs énergétiques (essence, électricité, hydrogène) pour les TCO d’un véhicule de segment C en 2040

Comparaison de TCO entre une motorisation électrique à batterie et à hydrogène

Si l’on fait un focus sur la comparaison entre la solution électrique à grande autonomie et la solution PAC, on remarque qu’en 2020, peu importe le prix de l’hydrogène, le véhicule PAC n’est pas compétitif.

En 2040, la tendance s’inverse et la solution PAC devient plus rentable que la solution BEV si le prix à la station de l’hydrogène arrive à atteindre la barre des 2€/kg. Cela semble aujourd’hui impossible car cela ne couvrirait pas le seul coût de production, auquel il faudrait ajouter les coûts liés à la compression et à l’acheminement de l’hydrogène jusqu’à la station. Il est donc important de souligner à ce stade que ce qui rendra le véhicule PAC compétitif, ce n’est pas tant la baisse du prix de l’hydrogène à la pompe (qui arrivera vraisemblablement mais ne suffira pas) que la baisse de l’investissement de la technologie PAC.

<table>
<thead>
<tr>
<th>Prix H2[€/kg]</th>
<th>Kilométrage annuel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7500</td>
</tr>
<tr>
<td>4</td>
<td>12795</td>
</tr>
<tr>
<td>6</td>
<td>13897</td>
</tr>
<tr>
<td>8</td>
<td>14907</td>
</tr>
<tr>
<td>10</td>
<td>16007</td>
</tr>
</tbody>
</table>

3.3.3. Véhicule léger, familiale (segment D)

Le segment des véhicules familiaux a été analysé sur six motorisations différentes (Figure 44). On considère pour ce segment un kilométrage annuel de 20000km. En 2020 hormis pour les solutions PAC et BEV à autonomie étendue, les TCO sont très proches. La solution la plus économique est la motorisation FullHybride ; elle est à égalité avec la solution MildHybride.

Vingt ans plus tard, le VE devient la solution la plus économique, bénéficiant de la baisse du prix des batteries. La solution PAC voit son TCO diminuer fortement (-32%) et se rapprocher des autres solutions. Cela est dû à la baisse du prix de l’hydrogène à la pompe et à la baisse du prix d’achat du véhicule (passant en euro constant de 82 000 à 55 000€ en 20 ans).
3.3.4. Véhicule utilitaire

Pour le véhicule utilitaire (VUL), six motorisations ont été envisagées, dont le thermique GNV pour 2020 et bioGNV pour 2040 (Figure 45). En 2020 les autonomies des VUL électriques restent faibles, même avec une batterie de 80 kWh (~350km). Il est donc de comparer les TCO, car ce n’est pas le même service qui est offert. Mais comme il n’existe pas d’autre offre sur le marché, c’est cette batterie qui a été analysée. Au niveau des TCO, c’est la solution thermique GNV qui est la plus avantageuse en 2020, bénéficiant d’un prix d’achat moindre et d’un poste « énergie » relativement compétitif. La solution PAC apparaît trop chère, tout comme les solutions hybrides (surtout l’hybride rechargeable).

En 2040, tout comme sur le segment D, la PAC comble une grande partie de son retard (baisse de l’investissement et du coût de l’hydrogène). Elle fait ainsi mieux que les solutions thermiques Diesel et hybrides. Mais le meilleur TCO revient au VUL électrique, avec une autonomie certes plus faible, suivi de la solution bioGNV. Cependant, comme dit en introduction du chapitre, l’hypothèse du prix du bioGNV est ici plutôt optimiste. De plus, il n’est pas évident aujourd’hui que des véhicules thermiques fonctionnant au bioGNV soient autorisés à la vente en 2040.
3.3.5. Autobus 12m

Pour l’autobus cinq motorisations sont analysées. Pour la solution électrique nous avons considéré une autonomie d’environ 200 km, soit une capacité de batterie embarquée de 340 kWh. En 2040 avec les gains en consommation électrique (réduction du poids, gain en rendement sur la chaîne de traction), l’autonomie passe à 240 km (+20%).

On suppose que les systèmes embarqués (énergie + groupe motopropulseur) ont des volumes identiques et que cela ne change pas les capacités de transport de voyageurs.

Nous avons inclus dans le calcul du TCO un remplacement de la batterie ou de la PAC. Avec une hypothèse de 40 000km/an et une durée de possession de 12 ans, ce remplacement semble très probable. On rappelle enfin qu’aucun frais d’assurance n’est pris en compte dans ces calculs. Les assurances fonctionnent en effet par flotte (contrat sur un certain nombre de bus, pas sur un seul) et les écarts suivant la taille des flottes entraînent trop d’incertitude dans les calculs.

Les résultats montrent qu’en 2020, un bus électrique à batterie ou à hydrogène revient plus cher qu’un bus thermique (Diesel ou GNV) ou hybride Diesel (Figure 46). En 2040, le bus électrique devient le meilleur choix, et la PAC est une solution à considérer, surtout si le prix à la pompe de l’hydrogène vert devient inférieur à 6€/kg. La réduction du poste coût « énergie » pourrait en effet profiter grandement au TCO total.

![Graphique TCO d’un autobus en 2020 et en 2040 – Cycle RATP – 12 ans de possession – 40 000km/an](image)

Figure 46 : TCO d’un autobus en 2020 et en 2040 – Cycle RATP – 12 ans de possession – 40 000km/an

Analyse de sensibilité sur les prix de l’énergie

Une analyse de sensibilité sur les prix des vecteurs énergétiques a été également menée pour le bus (Figure 47). En 2020 la variation sur les prix va de -20 à +20%. En 2040, elle s’étend de -40% à +40%.

On peut voir qu’en 2020 même avec un hydrogène beaucoup moins cher, la solution PAC n’est pas intéressante économiquement. En 2040, les solutions thermiques sont toujours trop chères sur toute la gamme de variation des prix de l’énergie. Même si l’électricité est 40% plus chère que le coût estimé dans cette étude, le bus électrique restera la solution non fossile la plus compétitive. Avec un hydrogène 40% moins cher que les hypothèses initiales (i.e 3.6 €/kg en 2040 à la pompe) si on considère par exemple un hydrogène vert produit sur site, le TCO du bus PAC atteindrait 550 000€, soit le même ordre de grandeur que le bus électrique avec les hypothèses initiales d’E4T 2040.
3.3.6. Poids lourd 12-19t

Pour les poids lourds non articulés de 12 à 19 tonnes, six motorisations sont analysées. Pour la solution électrique nous avons considéré une autonomie d’environ 250 km, soit une capacité de batterie embarquée de 240 kWh. En 2040 avec les gains en consommation électrique (réduction du poids, gain en rendement sur la chaîne de traction), l’autonomie passe à 325 km (+25%).

Nous avons inclus dans le calcul des TCO un remplacement de la batterie ou de la PAC. Avec une hypothèse de 40 000 km/an et une durée de possession de 12 ans, ce remplacement semble très probable. Il est à noter que les grands transporteurs ne gardent généralement pas leurs poids lourds plus de 4 ou 5 ans, alors que d’autres les gardent beaucoup plus longtemps. La durée de possession de 12 ans a été choisie de manière à représenter au mieux la forte variabilité.

Les résultats montrent qu’en 2020 les technologies électriques et PAC sont beaucoup plus chères que les solutions thermiques ou hybrides (Figure 48). La solution hybride rechargeable (batterie de 30 kWh) ne semble pas non plus être économiquement intéressante. Les écarts de TCO sont en revanche très faibles entre la solution 100% thermique Diesel ou GNV et le FullHybride Diesel (2% d’écart entre ces trois solutions).

En 2040, hormis par rapport au bioGNV (mais dont l’hypothèse de prix est optimiste), la solution électrique devient compétitive. La PAC reste encore légèrement trop chère mais avec une optimisation du coût de production de l’hydrogène (production sur site par exemple) cette solution est tout à fait intéressante et offrirait une autonomie supérieure à la solution électrique à batterie. A noter que sans le changement de batterie ou de PAC à mi-vie, les PL électrique et PAC se rapprochent de la première place en 2040.
Analyse de sensibilité sur le kilométrage annuel

Tout comme la durée de possession, il existe une forte dispersion du kilométrage annuel moyen en fonction des transporteurs. Une analyse de sensibilité sur ce paramètre est présentée Figure 49. Le kilométrage annuel varie ainsi de 30 000km à 80 000km.

La technologie PAC n’est pas intéressante économiquement en 2020, même avec un faible kilométrage, mais se rapproche des autres en 2040. Toujours en 2020, on peut voir que la motorisation présentant le TCO le plus faible dépend du kilométrage.

En 2040, en dessous de 35 000 km/an, la solution électrique est moins compétitive que les solutions hybrides. Il est à noter les résultats intéressants du bioGNV, qui reste la solution la moins coûteuse sur toute la plage de variation du kilométrage annuel, avec toutes les réserves précisées en introduction de ce chapitre (hypothèse de prix à la pompe en 2040 avantageuse).

Figure 48 : TCO d’un PL 12t en 2020 et en 2040 – Cycle Carrefour City – 12 ans de possession

Figure 49 : Analyse de sensibilité sur le kilométrage annuel moyen d’un PL 12t pour les TCO en 2020 et 2040
Analyse de sensibilité sur le prix de l’énergie

Toujours pour prendre en compte la forte incertitude sur le prix des énergies en 2040 (et notamment celui de l’hydrogène vert), une analyse de sensibilité a été menée (Figure 50). Avec un hydrogène 40% moins cher qu’avec les hypothèses initiales (i.e 3.6 €/kg en 2040 à la pompe) le TCO diminue à 250 000€ et se rapproche des solutions thermiques et hybrides. D’un autre côté, si l’électricité est plus chère que l’hypothèse initiale (18 €/MWh en 2040) le PL 12t électrique à batterie présentera un TCO plus élevé que les solutions thermiques ou hybrides. Enfin, la solution bioGNV reste compétitive, même avec un prix à la pompe de bioGNV 40% plus élevé que nos hypothèses initiales.

![Figure 50 : Analyse de sensibilité sur les prix des vecteurs énergétiques (gazole, GNV, électricité, hydrogène) pour les TCO en 2040](image)

3.3.7. Poids lourds 40-44t

Pour les poids lourdsarticulés de 40 à 44 tonnes, cinq motorisations sont analysées. Pour la solution électrique nous avons considéré une autonomie d’environ 400 km, soit une capacité de batterie embarquée de 750 kWh. En 2040 avec les gains en consommation électrique (réduction du poids, gain en rendement sur la chaîne de traction), l’autonomie passe à 500 km (+25%). Nous avons inclus dans le calcul des TCO un remplacement de la batterie ou de la PAC. Avec une hypothèse de 90 000km/an et une durée de possession de 12 ans, ce remplacement est indispensable. Il est à noter que les grands transporteurs ne gardent généralement pas leurs poids lourds plus de 4 ou 5 ans, alors que d’autres les gardent beaucoup plus longtemps. La durée de possession de 12 ans a été choisie de manière à représenter au mieux la forte variabilité.

En 2020 les technologies électriques à batterie ou PAC sont beaucoup plus chères que les solutions thermiques ou hybrides (Figure 51). Les écarts sont encore plus prononcés qu’avec les PL non articulés. Là encore la solution 100% thermique GNV est très intéressante économiquement, mais la solution hybride rechargeable peut avoir un intérêt pour la traversée éventuelle de zones péri-urbaines en mode « zéro émission », pour un TCO environ 15% plus élevé.

En 2040, les solutions électriques et PAC deviennent économiquement intéressantes, compte tenu de la baisse de l’investissement et du prix de l’hydrogène. Mais c’est bien la solution thermique bioGNV qui apporte les TCO les plus faibles.
Analyse de sensibilité sur le kilométrage annuel

Tout comme la durée de possession, il existe une forte dispersion du kilométrage annuel moyen en fonction des transporteurs. Une analyse de sensibilité sur ce paramètre est présentée Figure 52. Le kilométrage annuel varie ainsi de 60 000km à 110 000km.

En 2020 il y un écart important entre les solutions thermiques/hybrides et les solutions électriques à batterie et PAC, et ce quel que soit le kilométrage annuel. En 2040, la solution bioGNV est plus intéressante que les autres technologies mais, comme dit précédemment, la solution thermique bioGNV n’est pas assurée d’être autorisée à la vente en 2040, et les hypothèses de prix du bioGNV en 2040 sont optimistes. A contrario les motorisations électriques sont mieux placées que les Diesel ou l’hybride rechargeable.

Analyse de sensibilité sur le prix de l’énergie

Toujours pour prendre en compte la forte incertitude sur le prix des énergies en 2040 (et notamment celui de l’hydrogène produit par électrolyse), une analyse de sensibilité a été menée (Figure 53). Avec un hydrogène 40% moins cher qu’avec les hypothèses initiales (i.e 3,6 €/kg en 2040 à la pompe) le TCO diminue à 450 000€ et fait bien mieux que les solutions thermique Diesel et hybride rechargeable si le prix du gazole reste bien égal à celui utilisé dans les hypothèses initiales. Même constat pour le PL 40t.
électrique à batterie. Là encore il faut prendre les résultats du bioGNV avec du recul, car les réglementations auront sans doute évolué d’ici 2040. On peut voir sur ce graphique qu’une augmentation de 40% du prix du bioGNV fait monter le TCO à 540 000€, et rejoindrait ainsi les solutions électriques à batterie ou à hydrogène si celles-ci gardent leur prix utilisé dans les hypothèses initiales.

3.3.8. Deux roues

Un modèle deux-roues 125cc a aussi été analysé, avec seulement deux motorisations : 100% thermique essence et 100% électrique à batterie (batterie de 7 kWh). Le TCO de la solution électrique est intéressant dès 2020, et bien plus encore en 2040 avec l’augmentation du prix de l’essence conjuguée à la baisse du prix des batteries (Figure 54). L’analyse de sensibilité montre même que ce constat est vrai quel que soit le kilométrage annuel (Figure 55).

3.4. Conclusions
L’analyse du TCO est difficile pour ne pas dire impossible à généraliser car il dépend du véhicule et de son usage.

Pour les VL, l’hybridation 48V est souvent plus intéressante que l’architecture FullHybride pour les kilométrages faibles ou dans la moyenne.

Plus la batterie est de faible capacité (citadine à 22 kWh ou compacte à 40 kWh), plus les BEV sont compétitifs.

Les TCO des BEV à grande autonomie (VL) rejoignent ceux des Thermiques/Hybrides dès lors que le coût du pack batterie passe sous les 100 €/kWh

L’analyse montre que les VL et VUL Fuel Cell seront difficilement compétitifs à l’horizon 2040, sauf si le prix de l’hydrogène produit par électrolyse est aux alentours de 3-4 €/kg

Les PL 40t électriques avec une grande batterie embarquée (750 kWh) seront compétitifs dès 2030. Mais à court terme les solutions à batterie de moindre capacité (~300 à 400 kWh) sont à privilégier. Il faudra cependant réduire les temps de recharge et adapter le maillage des stations de recharge pour optimiser le temps global de recharge sur tout le trajet. La solution PAC pourrait devenir également compétitive, en fonction du prix de l’hydrogène produit par électrolyse.

3.5. Références

AEA, R. (2014). Improving understanding of technology and costs for CO2 reductions from cars and vans in the period to 2030.

DOE. (2016). Overview of the DOE VTO Electric Drive Technologies R&D Program.

PPE (2019). Stratégie française pour l’énergie et le climat

RTE. (2021). "Futurs énergétiques 2050" - Consommation et production : les chemins de l’électricité de de RTE pour la neutralité carbone ; Chapitre 9

4. Analyse Environnementale

4.1. Description

L’objectif de ce lot est d’évaluer les impacts environnementaux de différents moyens de transport routier à différents horizons temporels et dans différents contextes d’usage, en prenant en compte à la fois le cycle de vie véhicule et le cycle de vie carburant.

Une Analyse du Cycle de Vie des différents segments de véhicules (véhicule particulier, bus, véhicule utilitaire léger, poids lourd livraison, poids lourd routier, deux roues) couplés aux technologies de propulsion (moteur thermique, hybride, électrique) et à leurs vecteurs énergétiques associés : carburants fossiles, mix électrique et hydrogène, permet de comparer les différentes options technologiques envisagées, en fonction de l’usage et d’identifier celles les plus adaptées aux différents contextes.

L’ACV a été réalisée conformément aux normes ISO 14040 & 14044 à l’aide du logiciel commercial d’ACV SimaPro®version 9.2.0.2. La base de données utilisée est Ecoinvent v.3.7.1. La modélisation choisie est par défaut « allocation, cut-off by classification ».

4.2. Champs de l’étude

4.2.1. Définition du système

4.2.1.1. Description des véhicules étudiés

Dans le cadre de cette étude, les mêmes architectures véhicules que les lots 1 et 2 ont été modélisées. Pour chaque catégorie de véhicule, plusieurs scénarios de durée de vie de véhicules, de batteries et de kilométrage annuel ont été réalisés (Tableau 14).

<table>
<thead>
<tr>
<th>Segment A</th>
<th>Segment C</th>
<th>Segment D</th>
<th>VUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durée de vie des véhicules</td>
<td>10 ans (80 000 km)</td>
<td>10 ans (125 000 km)</td>
<td>10 ans (150 000 km)</td>
</tr>
<tr>
<td></td>
<td>15 ans (120 000 & 150 000 km)</td>
<td>15 ans (150 000 km & 187 500)</td>
<td>15 ans (150 000 km & 225 000)</td>
</tr>
<tr>
<td></td>
<td>20 ans (160 000 km)</td>
<td>20 ans (250 000 km)</td>
<td>20 ans (300 000 km)</td>
</tr>
<tr>
<td>Durée de vie des batteries</td>
<td>Idem durée de vie véhicule</td>
<td>Idem durée de vie véhicule</td>
<td>Idem durée de vie véhicule</td>
</tr>
<tr>
<td>Kilométrage annuel des véhicules</td>
<td>80 000 km</td>
<td>10 000 km</td>
<td>10 000 km</td>
</tr>
<tr>
<td></td>
<td>10 000 km</td>
<td>12 500 km</td>
<td>15 000 km</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bus</th>
<th>PL livraison</th>
<th>PL routier</th>
<th>2 roues (125cc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durée de vie des véhicules</td>
<td>12 ans (480 000 km)</td>
<td>12 ans (372 000 km)</td>
<td>12 ans (750 000 km)</td>
</tr>
<tr>
<td>Durée de vie des batteries</td>
<td>6 ans</td>
<td>6 ans</td>
<td>6 ans</td>
</tr>
<tr>
<td>Kilométrage annuel des véhicules</td>
<td>40 000 km</td>
<td>31 000 km</td>
<td>62 500 km</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 600 km</td>
</tr>
</tbody>
</table>

Tableau 14 Scénarios durée de vie des véhicules, batteries et kilométrage annuel

Chaque catégorie de véhicules est associée à plusieurs architectures (motorisation), plusieurs cycles de conduite, plusieurs couples <durée de vie véhicule / kilométrage annuel> ainsi que deux horizons...
temporels. Au total, 844 simulations ont été réalisées afin de générer tous les résultats de ce lot. Le détail est présenté sur le Tableau 15.

<table>
<thead>
<tr>
<th></th>
<th>Nombre d'architectures véhicules</th>
<th>Nombre de cycles de conduite</th>
<th>Nombre de variations paramétriques (durée de vie, kilométrage, etc.)</th>
<th>Nombre d'horizons temporels (2020 & 2040)</th>
<th>Nombre de simulations</th>
</tr>
</thead>
<tbody>
<tr>
<td>VL Segment A</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>VL Segment C</td>
<td>9</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>288</td>
</tr>
<tr>
<td>VL Segment D</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>320</td>
</tr>
<tr>
<td>VUL</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>56</td>
</tr>
<tr>
<td>Bus</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>PL livraison</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>PL routier</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>Scooter</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>16</td>
</tr>
</tbody>
</table>

Tableau 15 Décompte du nombre de simulations réalisées

4.2.1.1. Véhicules particuliers

On fait ici l’hypothèse que les véhicules sont assemblés en France et également utilisés en France. Deux horizons temporels ont été considérés dans le cadre de cette étude : l’actuel (2020), et 2040.

Les véhicules particuliers ont été modélisés d’après les données du Lot 1 concernant les poids des véhicules, selon le découpage suivant :

- Caisse en blanc du véhicule avec options et boîte de vitesse
- Moteur thermique
- Moteur électrique et génératrice
- Batterie

La composition matière des véhicules s’appuie sur le rapport IMPRO CAR II « Feebate and scrappage policy instruments » du JRC. Les données du « small petrol engine » ont été utilisées.

Le choix des matériaux utilisés ainsi que leur mise en forme pour la modélisation des carcasses des véhicules personnels sont basés sur le procédé Ecoinvent « glider, passenger car ».

La consommation d’énergie : électricité et gaz naturel, pour la fabrication des véhicules est basée sur le rapport IMPRO CAR I « Environmental Improvement of Passengers Cars » du JRC pour le segment C. Les consommations pour les segments A et D ont été extrapolées d’après ces valeurs. Un rendement de 70 % pour la conversion du gaz naturel en chaleur a été considéré.

4.2.1.2. Bus

La composition matière des bus est basée sur le découpage matière de la présentation d’Iveco Irisbus et est détaillée selon l’architecture thermique, hybride, ou électrique. Des hypothèses et extrapolations ont également été réalisées.

Le choix des matériaux utilisés ainsi que leur mise en forme pour la modélisation des bus sont basés sur le procédé Ecoinvent « bus, production RER ».

La consommation d’énergie et de chaleur pour la fabrication des véhicules est basée sur le procédé Ecoinvent « bus, production RER ». Un rendement de 70 % pour la conversion du gaz naturel en chaleur a été considéré.
La durée de vie des bus est supposée égale à 12 ans à raison de 40.000 km / an, soit 480.000 km sur leur cycle de vie.

4.2.1.3. Véhicules Utilitaires Légers

La durée de vie de ces véhicules est supposée égale à 12 ans à raison de 16.200 km / an, soit 194.400 km sur leur cycle de vie.

4.2.1.4. Poids lourd livraison et routier

La définition de la composition matière et le choix des matériaux des poids lourds est basé sur les données utilisées pour la modélisation des bus : procédé Ecoinvent « bus, production RER ».

La durée de vie des poids lourds livraison est supposée égale à 12 ans à raison de 31.000 km / an, soit 372.000 km sur leur cycle de vie.

La durée de vie des poids lourds routier est supposée égale à 12 ans à raison de 62.500 km / an, soit 750.000 km sur leur cycle de vie.

4.2.1.5. Les véhicules à l’horizon 2040

Les véhicules à l’horizon 2040 sont modélisés d’après les véhicules considérés en 2020. Seul un allègement des véhicules a été pris en compte en se fondant sur le rapport réalisé par PE International et Gingko21 pour l’ADEME (ADEME, 2012) : « Il a été décidé avec les constructeurs que l’allègement du véhicule serait principalement modélisé par l’intégration d’une fraction d’aluminium plus importante. Les constructeurs ont fait l’hypothèse d’une réduction de 100 kg du poids ». Partant du constat que cette hypothèse s’appliquait aux véhicules du segment B, un pourcentage en fonction des poids des véhicules a été calculé. Cela représente ainsi le remplacement de 30 % de l’acier du véhicule (diminution de la quantité d’acier de 30 % en masse), par une quantité d’aluminium correspondant à 65 % de ces 30 % d’acier (augmentation de la quantité d’aluminium de 65 % * 30 % de la masse d’acier).

4.2.1.2. Pneus

La détermination du poids et la composition des pneus des véhicules particuliers et des VUL sont basés sur le rapport IMPRO CAR I « Environmental Improvement of Passengers Cars » du JRC.

Le poids des pneus des bus et des poids lourds est tiré de la présentation d’Iveco Irisbus. Leur composition est basée sur le rapport IMPRO CAR I « Environmental Improvement of Passengers Cars » du JRC.

La durée de vie des pneus quel que soit le type de véhicule routier est supposée égale à 40.000 km.

Le nombre de pneus d’un véhicule particulier est de 4, de même que pour les VUL.
Le nombre de pneus d’un bus et d’un poids lourd de livraison est pris égal à 6.
Le nombre de pneus d’un poids lourd routier est pris égal à 12.
Pour l’horizon temporel 2040, les pneus sont considérés inchangés par rapport à la modélisation actuelle des pneus.

4.2.1.3. Batteries

Les batteries sont modélisées d’après le rapport ADEME/Sphera « Analyse du cycle de vie relative à l’hydrogène » de septembre 2020 et GREET Technologie Lithium-ion NMC622 (Lithium-ion Nickel Manganèse Cobalt).

En 2020 : on considère que les batteries sont produites en Chine. Les émissions de gaz à effet de serre associées à leur production sont de 108 kg CO₂ eq. / kWh (sans fin de vie) et 95 kg CO₂ eq. / kWh (avec fin de vie) de batterie modélisée, ce qui est conforme aux ordres de grandeur que l’on peut trouver dans la littérature.
En 2040 : on considère que les batteries sont produites en Europe. Les émissions de gaz à effet de serre associées à leur production sont d'environ 87 kg CO₂ eq. / kWh (sans fin de vie) et 57 kg CO₂ eq. / kWh (avec fin de vie, hypothèse valorisation matériaux forte)
La durée de vie des batteries est supposée égale à la durée de vie des véhicules particuliers ainsi que des VUL. Elle est supposée égale à 6 ans pour les bus et les poids lourds.

4.2.1.4. Pile à combustible et vecteur énergétique H₂

4.2.1.4.1. Pile à combustible

Un module PAC (Pile à combustible) comprend :
- Un réservoir à hydrogène (34,5 kg CO₂ eq/kg réservoir : hypothèse E4T2040)
- Les équipements auxiliaires de la PAC
- La PAC, qui contient un certain nombre de cellules, des plaques et d'autres équipements pour maintenir les cellules compressées.

Dans cette étude, seule la technologie de pile à membrane échangeuse de protons (PEMFC) a été considérée.

Dans le Tableau 16 se trouvent les résultats de la modélisation du module PAC pour E4T2040. Les hypothèses principales sont :

- 2020 : 0,44 g Pt/kW de cellule & 2040 : 0,25 g Pt/kW de cellule (hypothèse DOE (DOE, 2019))
- 2020 : 225 W/cellule
- 2040 : gain de 50% en efficacité

<table>
<thead>
<tr>
<th>Modélisation IFPEN E4T2040</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact (kg CO₂ eq / 100 kW)</td>
</tr>
<tr>
<td>Contribution du Platine (%)</td>
</tr>
<tr>
<td>Impact platine (kg CO₂ eq / kg Pt)</td>
</tr>
</tbody>
</table>

Tableau 16 Modélisation de la PAC dans E4T2040

4.2.1.4.2. Production du vecteur énergétique H₂

Dans cette étude, on considère une production d’hydrogène par électrolyse PEM (Polymer electrolyte membrane) en France. On ne considère pas les électrolyseurs SOEC. La modélisation a été réalisée grâce à plusieurs sources de données (Données ADEME ; Bareiș 2019 ; Zhao 2018).

Dans la modélisation de la production d’hydrogène, on considère :

- L’électrolyseur
- Les accessoires de l’électrolyseur
- L’électricité (mix électrique français données Ecoinvent 3.7.1: 108 g CO₂ eq. / kWh avec la méthode IPCC 2013 GWP 100 ans)
- L’eau utilisée
- La compression de l’hydrogène à la sortie de l’électrolyseur (30 bars) à 200 bars pour son transport : 1,7 kW (hypothèse ADEME et FCH-JU)
- Le transport de l’hydrogène sur 50 km (hypothèse ADEME)
- La compression de l’H₂ à 880 bars (hypothèse JEC v5 2020) à la station-service

En résultat, on obtient : 6,33 kg CO₂ eq. / kg H₂ pour l’année 2020, et 4,13 kg CO₂ eq. / kg H₂ pour l’année 2040 (le mix électrique se décarbonant, voir section 4.2.1.5).
Pour information, la dernière version du JEC v5 2020 donne 175,2 g CO₂ eq. /MJ H₂ pour une production EU 2016 [filière EMEL2/CH1a 2016] ce qui correspond donc à 21 kg CO₂ eq. /kg H₂. Par conséquent, la valeur JEC v5 2020 pour la production d’hydrogène en France serait d’environ 5,4 kg CO₂ eq. /kg H₂ (mix EU = 3,9 * contenu carbone mix FR). Cette valeur est relativement proche de la valeur obtenue avec la modélisation IFPEN (6,33 kg CO₂ eq. /kg H₂).

4.2.1.5. Vecteurs énergétiques

4.2.1.5.1. Carburants liquides

4.2.1.5.2. Carburants gazeux

Le GNV (gaz naturel véhicule) est modélisé d’après la donnée Ecoinvent « Natural gas, high pressure, vehicle grade [GLO] market for natural gas, high pressure, vehicle grade | Cut-off, U ». Le bioGNV, qui est la version renouvelable du GNV (issu du biométhane), est modélisé à partir du procédé Ecoinvent « Biomethane, high pressure, vehicle grade [RoW] market for biomethane, high pressure, vehicle grade | Cut-off, U ».

Concernant le bioGNV, il est considéré que le CO₂ émis lors de la combustion du biométhane est intégralement compensé en amont par le CO₂ capté depuis l’atmosphère (par photosynthèse) durant la croissance des plantes. C’est pour cela que les émissions GES en « Tank-to-Wheel » sont considérées nulles. Il est à souligner que cette hypothèse concernant le bioGNV est très optimiste. Elle suppose que les déchets ménagers par exemple, ou les résidus de station d’épuration ne viennent pas alimenter les méthaniseurs. Il s’agit donc plutôt d’une valeur potentielle visant à déterminer le potentiel maximal du bioGNV. Les carburants gazeux (GNV et bioGNV) modélisés sont identiques pour les deux horizons temporels.

4.2.1.5.3. Électricité

Le mix moyen français issu de la base de données Ecoinvent a été utilisé pour l’horizon 2020 : « Electricity, medium voltage [FR] market for | Alloc Rec, U ». Dans le Tableau 17 on peut retrouver la valeur utilisée pour 2020 qui fait en fait référence au mix 2017 (base de données Ecoinvent 3.7) et la projection du mix français pour 2040 qui est considérée dans l’étude. Il est à noter que la valeur Mix FR 2020 de 108 gCO₂ eq/kWh paraît à la date de la parution de ce rapport plutôt élevée. En effet le mix électrique français est aujourd’hui (2022) plus proche de 70 gCO₂ eq/kWh. Les graphiques de ce chapitre vont donc surestimer les émissions de CO₂ eq pour les véhicules électriques mais aussi pour les véhicules PAC (car l’hydrogène est ici produit par électrolyse via le mix électrique FR).
<table>
<thead>
<tr>
<th>Electricity, medium voltage market, FR (E13.7.1) based on IEA 2017 statistics</th>
<th>Projection en lien avec la PPE (40 % de renouvelable) et scénario B 2028</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mix FR 2020</td>
<td>Mix FR 2040</td>
</tr>
<tr>
<td>Nucléaire</td>
<td>78,8 %</td>
</tr>
<tr>
<td>Gaz</td>
<td>1,5 %</td>
</tr>
<tr>
<td>Hydro</td>
<td>12,9 %</td>
</tr>
<tr>
<td>Éolien on shore</td>
<td>3,0 %</td>
</tr>
<tr>
<td>Éolien off shore</td>
<td>-</td>
</tr>
<tr>
<td>Solaire</td>
<td>-</td>
</tr>
<tr>
<td>Biomasse</td>
<td>0,2 %</td>
</tr>
<tr>
<td>Imports</td>
<td>1,5 %</td>
</tr>
<tr>
<td>Charbon</td>
<td>1,6 %</td>
</tr>
<tr>
<td>GWP 100 (IPCC 2013), E13.7.1</td>
<td>108 g CO₂ eq. /kWh</td>
</tr>
</tbody>
</table>

Tableau 17 : Composition du mix électrique français en 2020 et sa projection pour 2040

De même, on retrouve dans le Tableau 18 la projection du mix européen pour 2040 qui est utilisé dans l’étude. Il est possible de remarquer que l’écart entre les mix français et européen en termes d’impact de réchauffement climatique se réduit en 2040 avec ce scénario de projection des mix électriques.

<table>
<thead>
<tr>
<th>Electricity, medium voltage market, EU (E13.7.1) based on IEA 2017 statistics</th>
<th>Hypothèse JRC scénario EUCO3030: 54 % ENR Origine géographique basée sur EurObserver 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mix EU 2020</td>
<td>Mix EU 2040</td>
</tr>
<tr>
<td>Nucléaire</td>
<td>22,9 %</td>
</tr>
<tr>
<td>Gaz</td>
<td>17,4 %</td>
</tr>
<tr>
<td>Hydro</td>
<td>11,1 %</td>
</tr>
<tr>
<td>Éolien on shore</td>
<td>13,7 %</td>
</tr>
<tr>
<td>Éolien offshore</td>
<td>-</td>
</tr>
<tr>
<td>Solaire</td>
<td>4,6 %</td>
</tr>
<tr>
<td>Biomasse</td>
<td>6,4 %</td>
</tr>
<tr>
<td>Charbon</td>
<td>22,9 %</td>
</tr>
<tr>
<td>GWP 100 (IPCC 2013), E13.7.1</td>
<td>418 g CO₂ eq. /kWh</td>
</tr>
</tbody>
</table>

Tableau 18 : Composition du mix électrique européen en 2020 et sa projection pour 2040

4.2.1.5.4. Biocarburants

Les émissions de GES par filière sont basées sur les données de la REDII (European Commission, 2018). En 2019, le facteur d’émission moyen calculé pour le biodiesel est de 49,8 gCO₂eq/MJ. Cette valeur est extrapolée à 2020.

Hypothèse biodiesel 2040 : On considère que 100% du BtL30 provient des déchets de bois. Tout comme pour le bioGNV, il s’agit ici d’hypothèses optimistes visant à déterminer le potentiel maximal du biodiesel. La valeur REDII utilisée est : 13,7 g CO₂ eq./MJ.

La composition de l’éthanol français 2019 se trouve dans le Tableau 20.

<table>
<thead>
<tr>
<th>Éthanol</th>
<th>61,0% résidus viniques</th>
<th>9,0%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>canne à sucre</td>
<td>1,0%</td>
</tr>
<tr>
<td></td>
<td>maïs</td>
<td>30,4%</td>
</tr>
<tr>
<td></td>
<td>betterave</td>
<td>23,0%</td>
</tr>
<tr>
<td></td>
<td>blé</td>
<td>35,0%</td>
</tr>
<tr>
<td></td>
<td>résidus de bière</td>
<td>0,1%</td>
</tr>
<tr>
<td></td>
<td>orge</td>
<td>0,5%</td>
</tr>
<tr>
<td></td>
<td>égout pauvre de 2nd jet</td>
<td>1,3%</td>
</tr>
<tr>
<td>ETBE (part renouvelable)</td>
<td>31,0% blé</td>
<td>20,0%</td>
</tr>
<tr>
<td></td>
<td>canne à sucre</td>
<td>5,0%</td>
</tr>
<tr>
<td></td>
<td>maïs</td>
<td>54,3%</td>
</tr>
<tr>
<td></td>
<td>betterave</td>
<td>18,0%</td>
</tr>
<tr>
<td></td>
<td>orge</td>
<td>1,7%</td>
</tr>
<tr>
<td></td>
<td>seigle</td>
<td>0,4%</td>
</tr>
<tr>
<td></td>
<td>triticale</td>
<td>1,0%</td>
</tr>
<tr>
<td>HVHTE</td>
<td>8,0% palme</td>
<td>89,0%</td>
</tr>
<tr>
<td></td>
<td>colza</td>
<td>7,0%</td>
</tr>
<tr>
<td></td>
<td>POME</td>
<td>4,0%</td>
</tr>
</tbody>
</table>

Tableau 20 : Composition de l’éthanol français 2019

Les émissions de GES par filière sont basées sur les données de la REDII, en excluant les valeurs pour les voies de production utilisant de la lignite pour les filières betterave, maïs, autres céréales. En 2019, le facteur d’émission moyen calculé pour l’éthanol est de 41,4 gCO₂eq/MJ. Cette valeur est extrapolée pour 2020.

Hypothèse éthanol 2040 : On considère que 100% de l’éthanol G2 provient aussi des déchets de bois. Tout comme pour le bioGNV, il s’agit ici d’hypothèses optimistes visant à déterminer le potentiel maximal du bioéthanol. Le facteur d’émission de la REDII utilisée est : 18,6 g CO₂ eq./MJ.

Au niveau de la consommation, des hypothèses de surconsommation pour les véhicules utilisant les biocarburants sont prises en compte par rapport aux véhicules thermiques classiques à essence ou Diesel (basées sur les données énergétiques du JEC v5 2020). Pour le B30 (2020) et BtL30 (2040), on n’obtient quasiment pas de différence de consommation par rapport au véhicule Diesel classique (augmentation inférieure à 1,5%).
En revanche pour le E85 (2020) et E85G2 (2040), une surconsommation de 30% est considérée par rapport au véhicule essence classique.

4.2.1.6. Utilisation

4.2.1.6.1. Cycles d'utilisation

Plusieurs cycles d'utilisation ont été étudiés.

Pour les véhicules particuliers et VUL :
- Cycle urbain (artemis urban)
- Cycle extra-urbain (artemis road)
- Cycle autoroutier (inrets)
- Cycle E4T2040 (cycle annualisé, PowerBI)

Pour les 2 roues motorisées :
- Cycle Paris
- Cycle Banlieue

Pour les bus :
- Cycle RATP

Pour les poids lourd livraison :
- Cycle Carrefour city

Pour les poids lourd routier :
- Cycle France route

Les consommations des différents véhicules selon les cycles d'utilisation ont été établies dans le Lot 1 de cette étude.

4.2.1.6.2. Emissions à l'échappement

La prise en compte des polluants réglementés et non réglementés sont également calculés d'après la méthodologie COPERT : NOx, CO, Particules, HC aromatiques, et HC unspecified. Les PCl utilisés dans cette étude sont basés sur les valeurs du JRC, de même que les quantités de CO2 émises lors de la combustion des carburants.

Prise en compte des contextes d'émissions (« archétypes ») pour les polluants locaux
Une distinction des émissions des polluants à chaud versus des polluants émis à froid est faite :
- Tous les polluants émis en cycle urbain sont émis à froid et dans un contexte de forte densité
- Tous les polluants émis en cycle extra-urbain et autoroutier sont émis à chaud et dans un contexte de faible densité
Les émissions à l'échappement pour 2040 sont issues de projections.

4.2.1.6.3. Emissions hors échappement

Les émissions liées à l'usure des pneus, au freinage, et à la route : émissions hors échappement, sont calculées d'après la méthodologie COPERT (particules).

Hypothèses réalisées :
- Émissions hors échappement pour 2040 sont les mêmes que les émissions hors échappement pour 2020 (d'après COPERT)
- Mêmes valeurs pour les 3 segments de véhicules particuliers
- Mêmes valeurs pour les véhicules thermiques et mild hybrides
- Mêmes valeurs pour les véhicules full hybrid, PHEV, et électriques
4.2.1.7. Fin de vie
La fin de vie a été modélisée selon la méthode des impacts évités prenant ainsi en compte les impacts environnementaux liés aux phases de valorisation ainsi que les impacts évités des matériaux valorisés. Une étude spécifique sur des scénarïos liés à la fin de vie pourrait être envisagée. En effet, la seconde vie des batteries est un sujet d’actualité pouvant faire l’objet d’une étude à part entière.

4.2.1.7.1. Fin de vie véhicules
Le scénario de fin de vie des véhicules est modélisé à partir du rapport de PE International et Gingko21 pour l’ADEME : « Les constructeurs automobiles, membres du comité technique, nous ont transmis un scénario réaliste de recyclage des VHU post 2015 (France) et permettant l’atteinte des taux réglementaires ». Ainsi, la plupart des taux fournis concernant la proportion de recyclage, incinération, mise en décharge par type de matériaux a été réutilisée. D’autres informations sur les consommations énergétiques pour le recyclage des matériaux ainsi que des distances moyennes de collecte entre les centres de tri et les infrastructures de valorisation des matériaux ont été utilisées.

4.2.1.7.2. Fin de vie des pneus
Le scénario de fin de vie des pneus s’appuie en partie sur une étude réalisée pour l’ADEME intitulée « Transport et logistique des déchets » parue en octobre 2014. Le taux de collecte des pneus est supposé identique à celui des VHU, de même que les caractéristiques logistiques liées à leur acheminement sur les différents sites. Les mêmes statistiques de déchets ont été utilisées afin de modéliser la part des matériaux partant en incinération ou en décharge.

4.2.1.7.3. Fin de vie des batteries

Dans cette étude, la fin de vie des batteries a été modélisée d’après deux techniques différentes considérées en proportion équivalente: le traitement hydrométallurgique et le traitement pyrométallurgique. Ces deux traitements sont basés sur les procédés Ecoinvent : « Used Li-ion battery [GLO] treatment of used Li-ion battery, hydrometallurgical treatment » et « Used Li-ion battery [GLO] treatment of used Li-ion battery, pyrometallurgical treatment ». Par contre, c’est la modélisation conséquente qui a été utilisée afin de définir des scénarïos de fin de vie plausibles dans une optique de méthodologie des impacts évités.

4.2.2. Unité fonctionnelle
Dans le cadre de cette étude, deux fonctions inhérentes aux véhicules étudiés sont identifiées : le transport de personnes et le transport de marchandise. En effet, les véhicules particuliers et les bus permettent de transporter un nombre de personnes sur une distance donnée dans un trafic particulier. Les VUL et les poids lourds permettent de transporter une quantité de marchandise sur une distance dans certaines conditions de trafic. Dans les résultats du rapport, le nombre de personnes ou la quantité de marchandises transportés n’interviennent pas dans l’unité fonctionnelle.

1Véhicules Hors d’Usage
L’unité fonctionnelle retenue pour les véhicules routiers est le transport de personnes ou de marchandises sur une distance d’1 km dans un contexte de trafic donné.

Néanmoins, il serait intéressant d’interpréter les résultats en fonction du taux d’occupation des véhicules particuliers ou bus et en fonction de la capacité de chargement des poids lourds.

Le taux d’occupation pour les véhicules particuliers est en moyenne de 1,3 personne d’après l’Institut d’aménagement et d’urbanisme de la région Idf (2003). Le taux d’occupation pour les bus est en moyenne de 17,4 personnes d’après ce même Institut. D’après le lot 1, la capacité de chargement des VUL est de 1 217 kg. Le taux de chargement moyen des VUL est de 28 %. La quantité de marchandise moyenne transportée par trajet pour un VUL est donc de 341 kg.

La capacité de chargement des poids lourds livraison est de 4 150 kg. Le taux de chargement moyen des poids lourds livraison est de 60 %. La quantité de marchandise moyenne transportée par trajet pour un poids lourd livraison est donc de 2 499 tonnes.

La capacité de chargement des poids lourds routiers est de 30 tonnes. Le taux de chargement moyen des poids lourds routier est de 60 %. La quantité de marchandise moyenne transportée par trajet pour un poids lourd routier est de 18 tonnes.

4.2.3. Frontières du système

Les infrastructures, les routes et les bornes de recharge ont été exclues du périmètre de l’étude. Les étapes considérées sont celles présentées dans la Figure 56. Sur l’axe horizontal, l’ensemble des étapes du cycle de production des carburants est pris en compte : de l’extraction des matières premières jusqu’au réservoir du véhicule (Well to Tank) à l’utilisation du carburant (Tank to Wheel). Sur l’axe vertical propre au véhicule, il y a deux composantes : le cycle de vie du véhicule et le fonctionnement véhicule via l’utilisation du carburant. L’étude menée est donc qualifiée du puits à la roue ou Well to Wheel (WtW) avec la prises en compte du cycle de vie véhicule en plus. Les émissions hors échappement liées à l’usure des pneus et au freinage sont aussi considérées dans l’étude.

Figure 56 : Étapes considérées dans le périmètre : WtW incluant le cycle de vie véhicule
4.2.4. Catégories d’impact et indicateurs

4.2.4.1. Indicateurs midpoints

La méthode d’impact utilisée pour évaluer les indicateurs midpoints (orientés problèmes) est la méthode ILCD Midpoint 2011 préconisée par la Commission Européenne. Elle comprend 14 indicateurs dits midpoints (Tableau 21).

Dans le cadre de la méthodologie ILCD midpoint 2011, les différentes méthodes d’impact sont classées en 3 catégories :

- La catégorie I correspond à un niveau recommandé et satisfaisant.
- La catégorie II correspond à un niveau recommandé mais nécessitant des améliorations.
- La catégorie III correspond à un niveau recommandé mais devant être appliqué avec précaution.

Dans cette étude, huit indicateurs environnementaux midpoints seront présentés :

- Changement climatique (I)
- Acidification (II)
- Eutrophisation aquatique, eau douce (II)
- Eutrophisation terrestre (II)
- Création d’ozone photochimique (II)
- Effets respiratoires/émissions de particules (I)
- Radioactivité (II)
- Usage des ressources abiotiques-minéraux et métaux (III)

A noter également que certains indicateurs d’impacts sont qualifiés de globaux comme le changement climatique, la destruction de la couche d’ozone, ou encore l’appauvrissement des ressources. Les indicateurs s’attachant à caractériser la toxicité sont plutôt qualifiés de locaux ou régionaux selon l’échelle d’observation. Ainsi, les effets sur la santé humaine liés aux émissions de particules par exemple (Particulate matter/ Respiratory inorganics) s’estiment à une échelle plutôt locale à partir du lieu d’émission.

Dans ce rapport, les impacts, indépendamment de leur lieu d’émission, seront représentés sur un même graphique (par exemple, les émissions de particules lors de l’utilisation des véhicules en ville n’ont pas lieu au même endroit que les émissions de particules liées à l’extraction des métaux dans les mines). La question se pose de régionaliser les résultats pour ces indicateurs dits locaux pour ne pas faire de fausses interprétations.
<table>
<thead>
<tr>
<th>Impact category</th>
<th>Recommended default LCIA method</th>
<th>Indicator</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate change</td>
<td>Baseline model of 100 years of the IPCC</td>
<td>Radiative forcing as Global Warming Potential (GWP100)</td>
<td>I</td>
</tr>
<tr>
<td>Ozone depletion</td>
<td>Steady-state CDFP, 1999 as in WMO assessment</td>
<td>Ozone Depletion Potential (ODP)</td>
<td>I</td>
</tr>
<tr>
<td>Human toxicity, cancer effects</td>
<td>USEtox model (Rosenthal et al, 2008)</td>
<td>Comparative Toxic Unit for humans (CTU)</td>
<td>III</td>
</tr>
<tr>
<td>Human toxicity, non-cancer effects</td>
<td>USEtox model (Rosenthal et al, 2008)</td>
<td>Comparative Toxic Unit for humans (CTU)</td>
<td>III</td>
</tr>
<tr>
<td>Particulate matter/Respiratory inorganics</td>
<td>RiskPol model (Rbild and Lipard, 2004) and Groo et al 2007</td>
<td>Intake fraction for fine particles (kg PM2.5-osalg)</td>
<td>I</td>
</tr>
<tr>
<td>Ionising radiation, human health</td>
<td>Human health effect model as developed by Dreher et al, 1981</td>
<td>Human exposure efficiency relative to U²³⁵</td>
<td>II</td>
</tr>
<tr>
<td>Ionising radiation, ecosystems</td>
<td>No methods recommended</td>
<td>Interim</td>
<td></td>
</tr>
<tr>
<td>Photochemical ozone formation</td>
<td>LOTOS-EUROS (Van Zelm et al, 2008) as applied in ReCiPe</td>
<td>Tropospheric ozone concentration increase</td>
<td>II</td>
</tr>
<tr>
<td>Acidification</td>
<td>Accumulated Exceedance (Seppälä et al, 2005, Peuck et al, 2008)</td>
<td>Accumulated Exceedance (AE)</td>
<td>II</td>
</tr>
<tr>
<td>Eutrophication, aquatic</td>
<td>EUTREND model (Strojnska, 2006) as implemented in ReCiPe</td>
<td>Fraction of nutrients reaching freshwater and compartment (P) or marine and compartment (N)</td>
<td>II</td>
</tr>
<tr>
<td>Ecotoxicity (freshwater)</td>
<td>USEtox model (Rosenthal et al, 2008)</td>
<td>Comparative Toxic Unit for ecosystems (CTU)</td>
<td>III</td>
</tr>
<tr>
<td>Ecotoxicity (terrestrial and marine)</td>
<td>No methods recommended</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land use</td>
<td>Model based on Soil Organic Matter (SOM) (Mill et al, 2007a)</td>
<td>Soil Organic Matter</td>
<td>III</td>
</tr>
<tr>
<td>Resource depletion, water</td>
<td>Model for water consumption as in Swiss Ecoinventory (Frischknecht et al, 2008)</td>
<td>Water use related to local scarcity of water</td>
<td>III</td>
</tr>
<tr>
<td>Resource depletion, mineral, fossil and renewables²</td>
<td>CML 2002 (Büchi et al, 2002)</td>
<td>Scarcity</td>
<td>II</td>
</tr>
</tbody>
</table>

Tableau 21: Méthodes recommandées et leur classification associée (midpoint)

4.3. Résultats

4.3.1. Evaluation des impacts potentiels sur le changement climatique (Climate Change)

Cet indicateur rend compte du forçage radiatif (« réchauffement ») causé par les émissions de gaz à effet de serre. La capacité d’un gaz à effet de serre à influencer le forçage radiatif, son potentiel de réchauffement, est exprimée par rapport à une substance de référence (le CO₂).

4.3.1.1. Segment A

Pour le segment A, 4 types de motorisations sont comparés : BEV, BEV+ (véhicule électrique à plus grande autonomie), Mild Hybride (essence), thermique (essence). Les résultats sont calculés pour les deux horizons temporels, pour 4 couples <kilométrage annuel / durée de vie véhicule> ainsi que pour 4 cycles d’utilisation. Sur la Figure S7 sont présentés les résultats du segment A pour les quatre cycles de conduite : urbain, route, autoroute et le cycle d’homologation WLTC.
Pour les 2 horizons temporels (2020 et 2040) et quel que soit le mix électrique utilisé (français ou européen), la motorisation électrique est préférable au regard des émissions de GES sur l’ensemble du cycle de vie véhicule.
Pour les véhicules thermiques essence et peu hybrides, respectivement ICE (gasoline) et Mild hybride (gasoline) sur le graphe de la Figure S7, la phase d’utilisation est prépondérante au regard des émissions de GES avec notamment la consommation de carburant fossile, quel que soit le cycle et l’horizon temporel. Pour le VTH essence, le cycle urbain est toujours plus émetteur que les cycles route ou autoroute que ce soit en 2020 ou en 2040. Le véhicule hybride a un impact moindre en cycle route qu’en cycle urbain ou autoroute.

En termes d’émissions de GES sur le cycle de vie, le véhicule électrique est très avantageux en cycle urbain. En cycle autoroute avec un mix électrique européen, le véhicule électrique ne présente quasiment pas d’avantage en termes d’émissions de GES en 2020. En utilisant un mix électrique français, c’est la phase de production, véhicule et batterie, qui est prépondérante au niveau du potentiel d’impact de réchauffement climatique. Pour les véhicules fonctionnant à l’électricité, la diminution du poids de la batterie ainsi que son efficacité (diminution de la consommation d’électricité) sont les principaux leviers de la diminution de l’impact de ces véhicules sur le changement climatique.

4.3.1.2. Segment C

Pour le segment C, la phase d’utilisation est prépondérante pour toutes les architectures thermiques et hybrides non rechargeables (Figure S8). Dans le cas des véhicules électriques, ce sont les phases de production, véhicule et batterie, qui contribuent le plus aux impacts.

A architecture équivalente, le cycle urbain est plus émetteur que le cycle WLTC pour les véhicules thermiques et hybrides (mild et full-hybrid) à l’horizon 2020. En urbain, le véhicule électrique est de loin le moins émetteur quel que soit le mix électrique utilisé (français ou européen). Après le véhicule électrique, le PHEV et le véhicule ICE E85 (biocarburant) sont les architectures ayant le moins d’impact sur les cycles de conduite. Sur cycle WLTC, le véhicule thermique avec biocarburant E85 émet moins d’émissions de GES que le véhicule électrique rechargé via un mix électrique européen.
Figure 58 : Impacts potentiels sur le changement climatique pour les véhicules du segment C. Cycles de conduite urbain, route, autoroute et WLTC. Horizon temporel 2020 (10 ans 12,500 km/ann)

Figure 59 : Impacts potentiels sur le changement climatique pour les véhicules du segment C. Cycles de conduite route. Horizons temporels 2020 et 2040 (10 ans 12,500 km/ann)
Figure 60 : Impacts potentiels sur le changement climatique pour les véhicules du segment C. Cycles de conduite route Horizon temporel 2020. Analyse de sensibilité durée de possession

Pour les deux horizons(Figure 59), pour les architectures thermiques et hybrides, les véhicules thermiques essence ont un impact supérieur sur le changement climatique comparé aux véhicules thermiques Diesel, sur les différents cycles de conduite. Cela est lié à une consommation supérieure en essence par rapport au gazole pour des cycles d’utilisation équivalents.

Sur la Figure 59, une légère réduction des impacts de production des véhicules est observée en 2040. Cela s’explique par les hypothèses de modélisation : remplacement de 30% de l’acier du véhicule par une quantité d’aluminium correspondant à 65% de ces 30% d’acier. En 2040, la réduction de l’empreinte carbone des mix électriques français et européen entraîne une augmentation de l’écart entre les impacts du véhicule électrique et du véhicule thermique par rapport à 2020.

Sur la Figure 60, une analyse de sensibilité sur le kilométrage total parcouru par le véhicule pendant sa durée de vie est réalisée. Sur le deuxième graphique, la durée de possession, et donc la distance totale parcourue est doublée. De manière logique, avec une plus grande distance parcourue les impacts de production du véhicule sont mieux amortis et donc l’impact au km est réduit. Cela profite surtout aux véhicules électriques, puisque la pénalité CO₂ lors de la fabrication du véhicule (et de la batterie notamment) est d’autant plus amortie que le kilométrage annuel est grand. Il faut cependant nuancer cette conclusion, car si le kilométrage annuel est rallongé alors la batterie sera à changer plus rapidement et la pénalité CO₂ liée à sa fabrication augmentera. En effet, il est considéré ici que la batterie n’est pas remplacée durant les 250 000 km. Cela peut se justifier néanmoins par le manque de recul sur le vieillissement des batteries.
Les mêmes conclusions que pour le segment C peuvent être tirées de la Figure 61. Pour le segment D, le véhicule hydrogène à pile à combustion (FCEV) est ajouté. On rappelle que dans les hypothèses E4T 2040...
l’hydrogène est fabriqué à partir d’un électrolyseur, alimenté par l’électricité du réseau français (hydrogène « jaune »). Avec un mix électrique français, le véhicule électrique et le PHEV (homologation) ont les meilleurs résultats sur l’indicateur de potentiel de réchauffement climatique en 2020 et en 2040, également avec le mix électrique européen, devant le véhicule pile à combustible hydrogène. Pour le FCEV, environ un tiers des impacts est lié à la production d’hydrogène (électricité pour l’électrolyse de l’eau, un tiers à la production du réservoir (fibre de carbone) et de la pile à combustible (platine), et enfin un dernier tiers pour la batterie et le reste du véhicule. Une réduction des impacts du véhicule électrique de 25 % est observée en 2040, et de 23 % en 2040 pour le véhicule à hydrogène.

4.3.1.3. Bus

Les bus électriques (Figure 62) se distinguent des autres architectures de véhicules pour le transport de personnes (véhicules particuliers) par leur impact très inférieur sur le changement climatique. En effet, en 2020, avec un mix électrique français, le bus électrique semble être la meilleure solution de transport en commun routier. Le bus à hydrogène avec un mix électrique européen (grande partie des impacts liés à la production d’hydrogène) est en 2nde position. Cependant, en 2020, en considérant un mix électrique européen pour la recharge des bus électriques, le bus à hydrogène devient moins impactant concernant cet indicateur. En 2040, le bus électrique est toujours le moins émetteur de GES avec mix électrique français, mais la solution PAC fait mieux que l’électrique à batterie rechargé avec le mix européen. La phase d’utilisation pour les architectures thermiques et hybrides est prépondérante sur l’impact total sur le changement climatique. La solution bioGNV a été ajoutée pour ce segment, car elle semble tout à fait pertinente. Pour ce faire, la filière « Biomethane High Pressure » de la base Ecoinvent a été prise en compte. Cette solution bioGNV est réellement à considérer, et cela dès 2020. Comme une précédente étude menée par IPPEN pour l’AFG, elle avait déjà montré en 2018, le bioGNV possède un intérêt certain vis-à-vis de la réduction des émissions GES. Cette solution fait ainsi mieux que la PAC, pour un TCO bien moindre (voir Chapitre 3).

![Figure 62 : Impacts potentiels sur le changement climatique pour les bus. Cycles de conduite RATP (données ADEME). Horizons temporels 2020 et 2040 (12 ans-40 000 km/an)](image)

Sur le Tableau 22, une comparaison des émissions de GES du bus et des véhicules du segment D pour différentes motorisations est présentée. Les résultats sont exprimés en g CO₂ eq. / km-passager afin de déterminer le moyen de déplacement urbain le moins impactant en termes d’émissions de GES.

<table>
<thead>
<tr>
<th></th>
<th>Diesel 2020</th>
<th>GNV 2020</th>
<th>Électrique 2020²</th>
<th>Pile à combustible H₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus³ Segment D⁴</td>
<td>1931</td>
<td>178</td>
<td>1858</td>
<td>148</td>
</tr>
<tr>
<td>Bus Segment D</td>
<td>345</td>
<td>100</td>
<td>796</td>
<td>131</td>
</tr>
</tbody>
</table>

² Mix électrique français
³ Distance totale bus : 480 000 km (en cycle RATP)
⁴ Distance totale Segment D : 150 000 km (en cycle urbain)
Tableau 22 : Comparaison des émissions de GES du bus et des véhicules du segment D

4.3.1.4. Poids lourd de livraison

Figure 63 : Impacts potentiels sur le changement climatique pour les poids lourds livraison. Cycles de conduite « carrefour city ». Horizons temporels 2020 et 2040 (12 ans 31,000 km/an)

Pour le poids lourd livraison, les conclusions sont similaires au cas du bus urbain. La solution électrique se distingue des autres, à condition bien sûr que le mix électrique français soit utilisé pour la recharge de la batterie. En 2040 la technologie PAC est très intéressante d’un point de vue CO2.

4.3.1.5. Poids lourd routier

5 Taux d’occupation bus : 17,4 versus taux d’occupation segment D : 1,3
Figure 64 : Impacts potentiels sur le changement climatique pour les poids lourds routier. Cycles de conduite « France route ». Horizons temporels 2020 et 2040 (12 ans 62,500 km/an)

Sur la Figure 64, les résultats pour les poids lourds routier sont présentés. L’utilisation du poids lourd routier électrique avec un mix électrique européen en 2020 ne semble pas pertinente au regard des émissions de GES sur le cycle de vie. Pour les motorisations thermiques, hybrides, et pour le poids lourd hydrogène (pile à combustible), la phase d’utilisation est prépondérante. En 2040 avec la projection des mix électriques, le PL routier électrique s’avère intéressant. Le PL routier à hydrogène entraîne des émissions de GES plus faibles que les motorisations thermiques à l’horizon 2020 et 2040, et fait même mieux que le BEV mix européen. Comme avec le bus, la solution du bioGNV semble très pertinente en ce qui concerne les émissions GES. Elle fait mieux que la solution PAC, et presque aussi bien que la solution électrique.

4.3.1.6.2 roues

Figure 65 : Impacts potentiels sur le changement climatique pour les deux roues. Cycles de conduite : Paris et banlieue (données ADEME). Horizons temporels 2020 et 2040
Sur la Figure 65, les résultats pour les 2 roues sont présentés. Pour les 2 roues électriques, une grande partie (plutôt d’un tiers) des émissions de GES sur le cycle de vie est liée au cycle de vie de la batterie. Pour les 2 roues thermiques, la grande partie des impacts est liée au tank-to-wheel (émissions à l’échappement). Que ce soit en cycle Paris ou en cycle banlieue, les 2 roues électriques entrainent moins d’émissions de GES que les 2 roues thermiques. Un amortissement des impacts de production est observé avec une distance totale plus élevée parcourue par les 2 roues (dans le cas d’une distance totale de 69 000 km).

4.3.1.7. VUL

Figure 66 : Impacts potentiels sur le changement climatique pour les VUL. Cycles de conduite : WLTC. Horizons temporals 2020 et 2040 (12 ans, 16 200 km/an)

Sur la Figure 66 sont présentés les résultats des VUL pour le cycle de conduite WLTC. Avec un mix électrique français, le VUL électrique entraine le moins d’émissions de GES (en 2020 et 2040) quel que soit le cycle de conduite. En 2040, le VUL à hydrogène et le VUL PHEV présentent également des émissions de GES relativement faibles.

4.3.2. Evaluation des impacts potentiels sur la formation d’ozone photochimique (Photochemical ozone formation) pour le segment D

Cet indicateur rend compte de la formation d’ozone troposphérique (partie de l’atmosphère terrestre située au plus proche de la surface du globe jusqu’à une altitude d’une dizaine de kilomètres), causée par l’oxydation photochimique des Composés Organiques Volatils (COV) et du monoxyde de carbone (CO) en présence d’oxydes d’azote (NOx) et de rayonnement solaire.

Cet indicateur est calculé en équivalent de composés organiques volatils autre que le méthane. On y retrouve les hydrocarbures aromatiques polycycliques (HAP : benzène, toluène, xylène, etc.), les solvants, les alcools, les esters, les composés soufrés, chlorés, azotés, etc.

Les carburants liquides contiennent de nombreux composés organiques volatils pris en compte pour le calcul de cet indicateur, et leur combustion génère également des NOx.
Ainsi, l’étape d’utilisation du véhicule via du carburant liquide est l’étape la plus contributrice à l’indicateur de formation d’ozone photochimique (Figure 67). Sauf pour les véhicules utilisant de l’électricité, on constate que le cycle de vie de la batterie a une contribution importante à la formation d’ozone photochimique. Il semble que cela soit lié à l’utilisation de métaux pour la fabrication de la batterie. Le lithium, nickel, cobalt, et cuivre, contribuent à eux seuls à environ 45 % de l’impact des batteries sur la formation d’ozone photochimique. Pour cet indicateur, la motorisation pile à combustible est de loin celle qui a les impacts les plus importants (au moins un facteur 2 par rapport aux autres motorisations). Cela s’explique principalement par la production de la pile à combustible (extraction du platine). Pour cet indicateur, l’utilisation du PHEV (homologation), du thermique GNV et du biocarburant E85 est pertinente.

4.3.3. Evaluation des impacts potentiels sur l’acidification (Acidification) pour le segment D

Cet indicateur rend compte de l’acidification des sols et des eaux.
Le véhicule à hydrogène possède des impacts beaucoup plus élevés pour cet indicateur à cause principalement de la production de la pile à combustible et plus particulièrement de l’extraction du platine (et cela est lié au type de PAC), voir Figure 68. Concernant les véhicules électriques, le cycle de vie de la batterie a une contribution non négligeable sur cet indicateur. L’extraction du Cobalt et du Nickel en est notamment responsable.

Ce sont les produits chimiques utilisés pour extraire ces métaux des minerais qui contribuent fortement à l’indicateur d’impact acidification, essentiellement via les émissions de dioxyde de soufre dans l’atmosphère. En effet, les émissions de SOx, mais également NOx et NH3 entraînent des émissions d’ions hydrogène (H+) lorsque ces gaz sont minéralisés.

Les composés soufrés des carburants liquides sont également responsables d’une grande partie des impacts de l’étape d’utilisation des véhicules non électrique.

4.3.4. Evaluation des impacts potentiels sur l’eutrophisation aquatique (eutrophication, freshwater) pour le segment D

Cet indicateur rend compte de l’eutrophisation aquatique généralement définie comme la croissance de végétaux et algues dans l’eau douce. La dégradation de la matière organique consomme l’oxygène, aboutissant à un défaut d’oxygène. En eau douce, le phosphore est considéré comme l’élément limitant.
Figure 69 : Impacts potentiels sur l’eutrophisation (freshwater) pour les véhicules du segment D. Cycles de conduite : route. Horizon temporel 2020 (10 ans 15 000 km/an)

Le véhicule à hydrogène et le véhicule électrique ont des impacts importants sur cet indicateur liés principalement à la production de la batterie (à cause du cuivre nécessaire à la cathode) et de la pile à combustible (extraction du platine), voir Figure 69. La production d’hydrogène a une influence non négligeable sur cet indicateur (électricité utilisée pour l’électrolyse). L’étape de production du véhicule a aussi une forte contribution pour cet indicateur. La contribution des circuits imprimés et tout ce qui s’apparente à des composés électrostatiques utilisant des métaux semble être contributeur à l’impact, notamment via le traitement des composés sulfurés en fin de vie. Cela entraîne des émissions de composés phosphorés dans les eaux.

4.3.5. Evaluation des impacts potentiels sur l’eutrophisation terrestre pour le segment D

Cet indicateur prend en compte de l’eutrophisation terrestre à laquelle l’azote et ses dérivés contribuent principalement. La croissance des végétaux dans le sol est alors accélérée. La dégradation de la matière organique consomme l’oxygène aboutissant à un défaut d’oxygène. Seule la concentration en azote est limitante pour l’eutrophisation terrestre.
Sur la Figure 70, des conclusions similaires au cas de l’indicateur d’eutrophisation (freshwater) sont retrouvées. L’extraction du platine est responsable des impacts pour cet indicateur (pile à combustible). De la même manière que pour l’indicateur de formation d’ozone photochimique, les émissions de NOx contribuent largement à l’eutrophisation terrestre. Ainsi, les motorisations Diesel en 2015 faisant l’objet d’un coefficient de surémission de 7 sur les NOx sont les moins bien positionnées.

4.3.6. Evaluation des impacts potentiels liés aux émissions de particules fines (Particulate matter/Respiratory inorganics) pour le segment D

Cet indicateur rend compte des effets néfastes pour la santé humaine causés par les émissions de particules primaires (directement émises comme particules) et de leurs précurseurs (NOx, SOx, NH₃, etc.), des gaz permettant la formation de particules dites secondaires. Cet indicateur d’impact environnemental est qualifié de local au contraire par exemple du réchauffement climatique qui lui est global. En effet, une variabilité spatiale simplifiée de l’impact est prise en compte dans la méthode utilisée. Cependant, cet indicateur pourrait faire l’objet d’une régionalisation plus poussée car selon les territoires (faible ou forte densité), les hauteurs d’émissions des particules, etc., les effets sur la santé humaine peuvent avoir une forte variabilité. La dimension spatiale n’est ici pas prise en compte du fait, d’une part, de la non-régionalisation de l’étude et, d’autre part, de la non-régionalisation des facteurs de caractérisation.
Pour cet indicateur, la motorisation pile à combustible est de loin celle qui a les impacts les plus importants (au moins un facteur 2 par rapport aux autres motorisations), voir Figure 71. Cela s’explique principalement par la production de la pile à combustible et du réservoir Hydrogène mais aussi par la production de l’hydrogène (électricité utilisée pour l’électrolyse). En revanche, les motorisations thermiques GNV et biocarburant E85 sont celles avec le moins d’impact.

Pour cet indicateur, on distingue les particules émises lors de la circulation du véhicule de celles émises dans les phases amont (extraction et transformation des matières premières nécessaires à la fabrication des différents composants, de leur assemblage) et de fin de vie. Ces deux types d’émissions n’affectent pas la santé humaine de la même façon : géographie, densité de population, type de population exposée, etc... Dans le cadre de l’étude de cet indicateur, il ressort que le cycle de vie des batteries a une contribution importante aux émissions de particules. En effet, pour le segment D par exemple, le véhicule électrique émet environ 30 % de plus de particules que son homologue thermique essence. Le nickel contribue à presque 25 % des émissions de particules sur la batterie modélisée dans le projet. Les circuits électroniques composés de métaux contribuent à presque 13 %. Les émissions semblent être majoritairement liées aux secteurs de la métallurgie et de l’affinage du nickel via notamment la production de dioxyde de soufre, substance prise en compte dans la méthodologie retenue par l’ILCD pour cet indicateur particulate matter/respiratory inorganics.

4.3.7. Evaluation des impacts potentiels sur l’épuisement des ressources (abiotic depletion potential) pour le segment D

Cet indicateur rend compte de l’usage des ressources fossiles, minérales et renouvelables. Cependant, aucune méthodologie n’est mature pour estimer la rareté en ressources renouvelables. Ces ressources ne sont donc pas caractérisées. La méthodologie utilisée évalue l’impact de l’extraction en fonction de la rareté de la ressource en tenant compte des réserves et des taux d’extraction.

6 L’indicateur concernant les ressources en ACV est toujours un sujet d’actualité au niveau des développements méthodologiques.
Sur la Figure 72, on peut constater que les cycles de vie des véhicules et des batteries contribuent majoritairement à cet indicateur. Le véhicule électrique et le véhicule à hydrogène ont les impacts les plus importants. S’agissant du cycle de vie véhicule, ce sont principalement le zinc, le plomb, l’aluminium et le moteur électrique dans les configurations où il est présent, qui contribuent à la majorité des impacts. La production de la batterie (extraction du cobalt et nickel) et de la pile à combustible (platine) a une nouvelle fois une influence majeure sur cet indicateur. Concernant le cycle de vie des batteries, c’est le circuit imprimé qui totalise la majeure partie des contributions à cet indicateur. Plus précisément le tantale contenu dans le condensateur. Les phases d’utilisation ne contribuent quasiment pas à cet indicateur. C’est lié à la construction de cet indicateur qui considère que les ressources fossiles sont substituables entre elles, ce qui conduit à un stock de ressources fossiles considérable. Or, le facteur de caractérisation étant un ratio entre le taux d’extraction actuel et le stock existant, les facteurs de caractérisation associés aux ressources fossiles sont très faibles. Ainsi, la consommation de carburant ne ressort pas du tout au niveau de cet indicateur. Cela résulte également de l’agrégation de deux indicateurs : épuisement des ressources minérales et épuisement des ressources fossiles, en un seul indicateur. La question de ce regroupement peut se poser.

4.3.8. Evaluation des impacts potentiels sur la santé humaine causé par les radiations ionisantes (Ionising radiation, human health)

Cet indicateur rend compte des effets néfastes pour la santé humaine causés par des émissions de substances ionisantes. Cet indicateur d’impact est qualifié de local ou régional au même titre que l’indicador d’émission de particules.
L’indicador d’impact sur la santé humaine causé par les radiations ionisantes est exprimé en Bq équivalent. Cette unité permet de caractériser la radioactivité. L’uranium engendre de la radioactivité et c’est lui qui sert de référence dans la méthodologie sélectionnée.
En France, en 2020, le mix électrique est largement dominé par la production nucléaire dont l’uranium est un des composants. Et c’est en réalité le procédé de traitement des résidus issus du traitement du minerai d’uranium qui contribue à 84 % des impacts du mix électrique français dans la base de données Ecoinvent utilisée. Les zones géographiques associées au procédé et donc aux impacts, sont les US, l’Australie, le Canada, la Namibie, et le Nigéria pour la localisation des mines. Ainsi, les émissions liées à cet indicateur se produisent très peu sur le lieu d’utilisation des véhicules. Les véhicules utilisant de l’électricité, avec le mix électrique actuel, sont donc très mauvais sur cet indicateur. Pour cet indicateur, le mix électrique français est donc plus impactant que le mix électrique européen.

Pour cet indicateur, la motorisation pile à combustion présente un bilan peu avantageux avec un potentiel d’impact six fois plus important que pour les véhicules thermiques (Figure 73). La production de l’hydrogène explique ce résultat (électricité utilisée pour l’électrolyse). L’influence de la production de l’électricité se voit aussi dans le cas du véhicule électrique et du PHEV.

4.4 Conclusions

L’objectif de cette partie était d’évaluer selon la méthodologie d’Analyse du Cycle de Vie, le positionnement environnemental de différentes architectures véhicules dans différents contextes d’usage et sur deux horizons temporels, avec un périmètre français.

L’essentiel de l’analyse est basé sur les indicateurs midpoints, niveau d’agrégation recommandé par la Commission Européenne. En effet, d’un point de vue scientifique, l’incertitude et la robustesse des indicateurs midpoints en font un niveau de d’analyse recommandé, alors qu’au niveau communication ou compréhension des résultats, le niveau d’agrégation des endpoints est plus simple d’utilisation.

De nombreuses hypothèses ont été prises tout au long de l’étude, mais elles sont toutes référencées et transparentes. Cela permettra de faire évoluer les cas d’études : horizon temporel, architectures véhicules, consommation carburant, taux d’occupation véhicules, trajets réalisés, etc.

Pour le segment A, le véhicule électrique est sans contexte le moins impactant sur les trois cycles de conduite au regard de l’indicateur du réchauffement climatique. En contexte urbain et avec un mix électrique français, le véhicule urbain de segment A émet environ 50 g de CO₂ / km. Même en utilisant un mix électrique européen, le véhicule reste préférable au véhicule thermique pour cet indicateur et pour ce segment.
Pour le segment C, les motorisations électriques, PHEV, et thermique avec biocarburant E85 présentent des résultats pertinents afin de limiter les émissions GES que ce soit en contexte urbain, péri-urbain ou extra-urbain. Le véhicule électrique de segment C émet néanmoins environ 85 g CO₂ / km en contexte urbain en 2020.

Pour le segment D, les tendances du segment C sont retrouvées. La motorisation à pile à combustible est ajoutée pour ce segment et se classe entre la motorisation électrique et thermique en termes de résultats sur l'indicateur de réchauffement climatique. Le véhicule électrique de segment D émet néanmoins environ 100 g CO₂ / km en cycle WLTC en 2020.

Pour les bus mais aussi pour les poids lourds livraison, la motorisation électrique présente les meilleurs résultats sur l'indicateur de réchauffement climatique à condition que le mix électrique soit français. En effet, avec un mix électrique européen, il serait préférable d'utiliser le bus hydrogène. En prenant en compte le taux d'occupation moyen des bus, ces derniers ressortent comme étant le moyen de transport idéal pour limiter les impacts sur l'environnement. En effet, leur taux d'occupation bien supérieur à celui des véhicules particuliers en fait un candidat privilégié pour les déplacements urbains.

Pour les VUL, la motorisation électrique est une nouvelle fois préférable pour l'indicateur de réchauffement climatique. Sur ce segment, le VUL PHEV et le VUL à PAC hydrogène se classent aussi en bonne position.

Dans ce rapport, les résultats sur d'autres indicateurs ont été présentés pour le segment D. Pour tous les autres indicateurs étudiés, le véhicule hydrogène à pile à combustible présente le plus mauvais bilan. Pour les indicateurs : potentiel d'oxydation photochimique, potentiel d'acidification et le potentiel d'eutrophisation terrestre, les architectures thermiques GNV, E85 (biocarburant) et PHEV présentent les meilleurs bilans. Pour les indicateurs : eutrophisation aquatique, épisemement des ressources abiotiques et radioactivité, les motorisations thermiques engendrent le moins d'impact tandis que les motorisations électriques et hydrogène avec pile à combustible engendrent le plus d'impact.

Concernant les véhicules particuliers, hormis les véhicules électriques, ce sont les véhicules hybrides rechargeables qui montrent des potentialités supérieures aux autres architectures en termes de réduction d'impacts environnementaux. En effet, la taille de leur batterie est inférieure à celle des véhicules électriques, et l'hypothèse du fonctionnement en tout électrique permettant d'effectuer les trajets du quotidien les positionnent devant les autres architectures. Il faudrait affiner l'analyse par des retours consommateurs par exemple au niveau de la gestion de la recharge et de leurs profils de consommation. L'utilisation des biocarburants dans des moteurs thermiques (plus particulièrement l'E85) montrent également un potentiel intéressant en comparaison avec l'usage des carburants classiques.

Ces travaux permettent également de mettre en relation les aspects environnementaux étudiés via ce lot 3, avec les aspects coûts issus du lot 2. En effet, une approche croisée des deux axes de recherche permet de proposer des solutions économiquement et environnementalement optimisées. Cette analyse croisée est présentée sur la Figure 74. On peut voir sur ces deux illustrations (segment C et bus) les principaux effets à retenir. Les motorisations à base majoritairement thermique (ICE, MHEV et HEV) vont voir leur coût augmenter d'ici 2040, en parallèle d'une réduction mesurée des émissions de CO₂. À l'inverse, les solutions électriques (à batterie ou hydrogène) vont voir leurs coûts diminuer de façon importante, tout en apportant des réductions des émissions de CO₂.
Enfin, il pourrait également être envisagé d’intégrer des notions d’externalités environnementales. En effet, sur des indicateurs tels que la santé humaine, la monétarisation des externalités liées à la réduction des émissions de particules par exemple, pourrait permettre d’aider au calcul de prime à l’achat des véhicules les moins émetteur, etc.

Cette étude est un précurseur pour de nombreuses études potentielles. Elle a permis de concaténer un grand nombre de données et d’informations de différents domaines techniques. Une base de données ACV transport a été initiée et il est désormais possible de l’alimenter mais également de s’en servir à d’autres fins.

4.5. Références

Journal officiel de l’Union Européenne.

Ademe, 2012. Elaboration selon les principes des ACV des bilans énergétiques, des émissions GES et des autres impacts environnementaux induits par l’ensemble des filières de véhicules électriques et thermiques

Ahmadi, Leila; Young, Steven B.; Fowler, Michael; Fraser, Roydon A.; Achachlouei, Mohammad Ahmadi (2017) A cascaded life cycle. Reuse of electric vehicle lithium-ion battery packs in energy storage systems. In : The International Journal of Life Cycle Assessment, vol. 22, n° 1, p. 111–124. DOI: 10.1007/s11367-015-0959-7.

Air Quality and Particle Technology Institute of Environmental Engineering ETH Zurich/ Empa Quantifying PM emissions and assessing health impacts. Avec la collaboration de Jing Wang, consulté le 29 novembre 2017.

Air Transportation Systems Laboratory, UCL Energy Institute, University College London (Wednesday, 2017,) Air Transportation and the Environment. Avec la collaboration de Andreas W. Schäfer. 66th LCA Discussion Forum. LCA of Mobility solutions: approaches and findings. ETH Zurich, Alumni Pavilion, Wednesday, 30 August 2017,, consulté le 29 novembre 2017.

DOE (2019) DOE Advanced Truck Technologies – Subsection of the Electrified Powertrain Roadmap

ETH Zurich Assessing the impacts of noise emissions of land-based mobility in Switzerland. Calculating a Swiss Noise Footprint induced by land based mobility needs of private households. Avec la collaboration de Samuel Schiess. LCA Forum Zurich, consulté le 29 novembre 2017.

ETH Zurich Climate change impacts of CO2 emissions into the stratosphere / upper troposphere. Avec la collaboration de Thomas Peter, consulté le 29 novembre 2017.

FNH Impacts et bénéfices environnementaux de l’électrification du parc automobile en France à horizon 2030.

Groupe Renault FROM THE FIRST LCA TO COLLABORATIVE LCA OF INNOVATIVE PRODUCTS AT RENAULT. Avec la collaboration de Stéphane MOREL. LCA FORUM ZURICH, consulté le 29 novembre 2017.

Harm Weken1, Edwin Bestebreurtje2, Rob Kroon3 “ Electric heavy duty trucks in Europe more and more upcoming “. EVS30 Symposium Stuttgart, Germany, October 9 - 11, 2017, consulté le 20 novembre 2017.

ICCT (09/215) Quantifying the impact of real-world driving on total CO2 emissions from UK cars and vans, consulté le 23 novembre 2017.

Michael Faltenbacher1, Alex Auf der Maur2, Stefan Eckert1, Sven Altenburg2 (2017) Zero charging can contribute. EVS30 Symposium Stuttgart, Germany, October 9-11, 2017, consulté le 18 novembre 2017.

Matthias Rupp1, Sven Schulze2, Isabel Kuperjans1 Comparative life cycle analysis of conventional and hybrid heavy-duty trucks. EVS30 Symposium Stuttgart, Germany, October 9 - 11, 2017, consulté le 20 novembre 2017.

Michael Baumann1, Michael Salzinger2, Simon Remppis2, Benjamin Schober2, Michael Held1, Roberta Graf1 Reducing the environmental impacts of electric vehicles and electricity supply: How Hourly Defined Life Cycle Assessment and smart charging can contribute. EVS30 Symposium Stuttgart, Germany, October 9 - 11, 2017, consulté le 20 novembre 2017.

Nordelöf, Anders; Messagie, Maarten; Tillman, Anne-Marie; Ljunggren Söderman, Maria; van Mierlo, Joeri (2014) Environmental impacts of hybrid, plug-in hybrid, and battery electric vehicles—what can we learn from life cycle assessment? In : The International Journal of Life Cycle Assessment, vol. 19, n° 11, p. 1866–1890. DOI: 10.1007/s11367-014-0788-0.

PE Documentation battery production ADEME. CONFIDENTIEL, consulté le 14 novembre 2017.

5. Analyse du parc français à horizon 2050

5.1. Introduction

Afin d’analyser les différentes politiques publiques permettant la décarbonation du secteur du transport et d’étudier les scénarios permettant d’atteindre les objectifs d’émissions de CO₂ fixés par la SNBC, IFPEN a développé un modèle de simulation intégré de la demande de transport : le modèle de parc automobile DRIVE²S (DiscRete choice modeling for low-carbon VEhicles fleet scenaRioS).

En permettant d’étudier les dynamiques du marché des véhicules particuliers à l’horizon 2040 en France et en Europe, le modèle DRIVE²S vise à :
- Établir différents scénarios de ventes des véhicules, principalement électriques et thermiques ;
- Identifier les conditions et actions d’une large gamme d’instruments et de politiques publiques à mettre en œuvre pour développer une mobilité bas carbone ; dont électrique ;
- Évaluer les impacts de ces politiques sur les émissions polluantes (CO₂, CO, NOₓ, PM10) du secteur du transport.

Le modèle est axé sur les comportements des individus en ce sens qu’il simule les modifications de comportement des consommateurs en réponse à un changement des conditions économiques. Il intègre :
- un modèle économétrique de demande de transport, permettant de projeter le stock de véhicules et les distances parcourues à l’horizon 2040 ;
- un modèle de choix discrets, permettant de répartir la demande par types de véhicule (petit, moyen, gros) et par technologie (Diesel, Essence, CNG, HEV essence, PHEV Essence, BEV, Hydrogène Pile à combustible). Il est à noter que la dénomination « Diesel » fait en fait référence aux motorisations thermiques Diesel et les Mild Hybrides Diesel. De même la dénomination « essence » ou « gasoline » englobe les motorisations 100% thermiques essence et les Mild hybrid essence (Hybride48V).

Les consommations unitaires d’énergie des différents véhicules et leurs émissions polluantes sont ensuite déduites. Ces dernières s’appuient sur des valeurs calculées par IFPEN à partir de conditions réelles de conduite. IFPEN dispose en effet de modèles de simulation de véhicules conventionnels, électriques et hybrides permettant la mesure et l’évaluation de la consommation énergétique des véhicules suivant leurs conditions d’usage.

Cinq leviers permettent de décarboner le secteur du transport : la modération de la demande de transport, le report modal, l’optimisation du taux de remplissage, l’efficacité énergétique des véhicules, et l’intensité carbone de l’énergie, voir Figure 75.

![Figure 75: Leviers clés pour décarboner les transports, utilisés dans la décomposition des émissions (Bigo, 2020)](image)

Le modèle DRIVE²S permet d’analyser trois de ces cinq facteurs - l’amélioration de la performance énergétique des véhicules, la croissance de la demande ainsi que la décarbonation de l’énergie
consommée par les véhicules – initialement à travers sept types de politiques publiques différenciées\(^7\). Le modèle ne s’intéressant qu’aux véhicules particuliers, le report modal n’est pas étudié. De même il n’y a pas d’optimisation possible de l’utilisation des véhicules (taux de remplissage).

Trois sous-sections composent cette section. La première développe la structure du modèle DRIVE\(^8\), le modèle de parc développé par l’IFPEN pour réaliser les projections de demande de transport tandis que les deux suivantes présentent les résultats obtenus pour les VL et les PL, respectivement, en fournissant à chaque fois des éléments d’analyse sur les effets des différentes politiques publiques.

5.2. Présentation de la structure du modèle DRIVE\(^8\)

Le modèle DRIVE\(^8\) prend en compte un certain nombre de paramètres et de données en entrée, voir Figure 76, et permet d’obtenir notamment, l’évolution du nombre de véhicules vendus par années et par technologie, la composition du parc par année et par technologie mais aussi tout un ensemble d’indicateurs environnementaux (émission de CO\(_2\), ...) dudit parc.

![Figure 76: Schéma fonctionnel des entrées-sorties du modèle DRIVE\(^8\)](image)

Le modèle DRIVE\(^8\) se décompose en deux modules.

Le premier permet de réaliser des projections à l’horizon 2040, par année et par pays, de la demande de transport routier. Celle-ci est exprimée soit en nombre total de véhicules soit en nombre total de kilomètres parcourus, à chaque fois sans distinction de type de véhicule ou de technologie.

Le second module consiste en un modèle de choix discrets (voir par exemple Train (2009)) qui permet de répartir pour chaque année les nouvelles ventes entre les différents types de véhicules existants, i.e. par type de voitures et de technologie. Au préalable, les nouvelles ventes ont été obtenues en soustrayant à la demande totale de stock de véhicules « projetée » à l’année t le stock restant de véhicules une fois retirés les véhicules mis à la casse\(^8\).

\(^7\) Développement des points de charge, investissement en R&D sur les véhicules thermiques, prix de l’énergie, subventions à l’achat de véhicules électriques, prime à la casse, taxe sur les carburants et taxe carbone.

\(^8\) Comme nous le verrons ci-après, des lois de survies sont appliquées par type de technologie pour obtenir ce stock restant de véhicules.
Ce type de modélisation de la demande de transport par des modèles de choix discrets est relativement courant dans la littérature. La structure du modèle DRIVE repose ainsi largement sur celle du modèle TREMOVE (De Ceuster et al., 2007). Elle est résumée dans la Figure 77 dont chacune des points a, b, c, d et e sont détaillés dans la suite.

5.2.1. Projection de la demande de transport routier

Cette partie décrit comment sont obtenues les projections de la demande de transport à l’horizon 2050. Deux mesures de cette demande de mobilité sont retenues : le stock total de véhicules et le nombre total de kilomètres parcourus. Ces projections sont issues d’un modèle éconornétrique, il s’agit donc d’un modèle de simulation de projection de la demande de transport. Une fois ces demandes obtenues pour chaque pas de temps, les niveaux de ventes totales de véhicules par années sont déduits.

5.2.1.1. Le stock total de véhicules et les kilomètres parcourus

Les projections de la demande de transport sont réalisées à partir de modèles économétriques estimant et quantifiant l’influence des principaux déterminants de la demande de transport sur le nombre total de kilomètres parcourus et le stock total de véhicules. Les modèles, les estimateurs économétriques utilisés ainsi que les résultats obtenus sont présentés en détail dans Gastineau et Chêze (2018). Ces modèles estiment à partir de données historiques la relation entre la demande de transport à la date t et un certain nombre de variables exogènes dont la demande de transport passée (t-1, t-2). Ces variables sont exprimées en termes de taux de croissance pour i) pouvoirs faciliter les interprétations en estimant directement les elasticités ii) et s’assurer qu’on travaille bien sur des séries temporelles stationnaires au sens statistique du terme.

L’équation (1) spécifie la relation entre le nombre total de kilomètres parcourus dans le pays c avec ses principaux déterminants :

\[VKM_{ct} = \theta_V VKM_{ct-1} \left(\frac{VKM_{ct-1}}{VKM_{ct-2}} \right)^{\theta_{VKM}} \left(\frac{PGAS_{ct}}{PGAS_{ct-1}} \right)^{\theta_{PGAS}} \left(\frac{GDPP_{ct}}{GDPP_{ct-1}} \right)^{\theta_{GDPP}} \left(\frac{RI_{ct}}{RI_{ct-1}} \right)^{\theta_{RI}} \]

(1)

De manière similaire, l’équation reliant le stock total de véhicules à ses principaux déterminants est spécifiée comme suit:

$$ ST_{c,t} = a_s ST_{c,t-1} \left(\frac{ST_{c,t-1}}{ST_{c,t-2}} \right)^{1/3} \left(\frac{PGAS_{c,t}}{PGAS_{c,t-1}} \right)^{1/3} \left(\frac{GDPP_{c,t}}{GDPP_{c,t-1}} \right)^{1/3} $$

(2)

Où ST correspond au « stock total de véhicules ».

Pour les équations (1) et (2), les elasticités retenues afin de pouvoir réaliser les projections de la demande de transport sont issues de Gastineau et Chèze (2018).

5.2.1.2. Loi de survie des véhicules et nouvelles ventes

Une fois le stock total de véhicules projeté pour chaque année jusqu’en 2040, il faut retirer les véhicules qui partent à la casse « naturellement » (accidents, voitures trop anciennes, etc.). Pour ce faire, et comme classiquement réalisé dans la littérature, une loi de survie est appliquée au stock total de véhicules. Ainsi, pour chaque technologie, $j \in K$, et pour chaque vintage $v \in V$, le « stock total restant de véhicules » SU à la date t est défini comme suit:

$$ SU_{j,v,c,t} = SA_{j,v,c} \left(\frac{f_{j,v}(-t)}{v} \right)^{\beta_{j,v}} $$

(3)

Avec SA représentant les ventes annuelles de la technologie j, du vintage v pour le pays c à la date t. La loi de survie retenue correspond à la fonction de survie de Weibull : avec $\beta_{j,v}$ le paramètre de forme et $\theta_{j,v}$ le paramètre d’échelle de la distribution. Les valeurs retenues pour ces deux paramètres sont issues du travail de thèse de Kolli (2012) qui a estimé ces paramètres sur les données de parcs françaises.

Dès lors, le « nombre total de nouvelles ventes nécessaire » TSA, est déduit en soustrayant à la demande totale de stock de véhicules « projetée » à l’année t le stock restant de véhicules.

$$ TSA_{c,t} = ST_{c,t} - \sum_{j,k} \sum_{v=30}^{t} SU_{j,v,c} $$

(4)

5.2.2. Comment déterminer les ventes par type de véhicule dans le futur ? Un modèle de choix discrets emboîté

Une fois le nombre total de nouvelles ventes calculé par année pour le pays considéré, il faut maintenant déterminer la répartition de ces ventes par type de véhicules et motorisation. Le secteur du transport est en pleine mutation avec, par exemple, l’arrivée de nouvelles technologies – au premier rang desquelles figurent biensûr les véhicules électriques – et la remise en question parfois très rapide – on pense ici au « Dieselgate » – de certaines technologies pourtant bien installées il y a encore dix ans. Dans ce contexte, on ne peut donc pas modéliser la demande à venir de nouvelles voitures électriques ou thermiques en « tirant le trait », c’est-à-dire en faisant simplement l’hypothèse que les comportements d’achat futurs seront les mêmes que ceux observés dans le passé. Ne serait-ce que parce que l’offre de voitures électriques commence seulement à émerger sur le marché.

Pour modéliser ces comportements d’achats futurs le choix est fait de s’appuyer sur la littérature des modèles de choix discrets (Train, 2009). Pour schématiser, cette littérature s’attache à expliquer les comportements de choix des agents économiques lorsqu’ils sont confrontés à un choix multimodal, i.e. comportant plusieurs alternatives. L’utilisation de ces modèles pour représenter les comportements dans les domaines du transport ou de la mobilité est particulièrement justifiée en ce sens que ces biens (moyen de transport ou de mobilité) ne sont pas demandés pour eux-mêmes mais pour répondre à une demande de service : se rendre d’un point A à un point B. Pour faire un trajet donné, un individu a le choix entre plusieurs options/modalités. Le mode de déplacement choisi (à pied, à vélo, en voiture, en transport en commun, etc.) sera celui qui lui apportera le plus de satisfaction parmi toutes les alternatives disponibles, compte tenu de ses préférences et de ses contraintes budgétaires.

L’hypothèse faite est que la décision d’achat d’un nouveau véhicule repose sur la comparaison des niveaux de satisfaction apportés par chaque type de véhicule disponible (thermique ou électrique). Le
On peut penser par exemple aux premiers postes de télévision ou aux premiers smartphones.

Ce choix est effectué en comparant les coûts respectifs des différents véhicules disponibles à la vente. On peut montrer (Cf. Train, 2009 pour une démonstration formelle) qu’avec une formulation de type logit multinomial, la probabilité de choisir l’alternative j, ici un véhicule caractérisé par (sa taille et) son mode de propulsion, parmi l’ensemble de choix possibles à la date t s’écrit comme suit :

\[
Pr_{j,t} = \frac{e^{U_{j,t}}}{\sum_{k \in K} e^{U_{k,t}}}
\]

(12)

D’après l’expression (12), cette probabilité dépend du TCO procuré par l’alternative j, noté $U_{j,t}$, comparé à l’ensemble des TCO de toutes les alternatives possibles ; soit, formellement, rapporté à la somme des TCO de toutes les alternatives possibles.

Ce choix, ou cette probabilité, ne dépend pas seulement de la comparaison rationnelle – au sens économique du terme – des TCO des véhicules mais également i) de leurs caractéristiques techniques ii) ainsi que, pour les technologies en rupture, de leurs modes de diffusion. Comme proposé par Struben and Sterman (2008) ou MacManus and Santer, (2009), le modèle logit multinomial emboîté développé ici intègre en plus un modèle simple de diffusion (Bass, 1969) pour mieux modéliser les taux de pénétration des nouvelles technologies (EVs, PHEVs, hydrogène, etc). Ce modèle de Bass (1969) traite de l’adoption par les consommateurs et de la diffusion de nouveaux produits et technologies, alors même qu’ils se caractérisent par des coûts de production et donc des prix d’achats élevés.\(^{10}\)

5.2.3. Calcul des impacts environnementaux

Une fois les ventes calculées et réparties, on obtient la composition du parc sur l’intervalle de temps de l’étude et on peut donc en déduire les consommations de carburant (gazole, essence, GNV, électricité, hydrogène) et, finalement, les émissions de CO\(_2\), CO, NO\(_x\) et particules fines correspondantes. Pour ce faire, les consommations du lot 1 ont été utilisées, notamment celles du cycle « Urbain » représentatif.

\(^{10}\) On peut penser par exemple aux premiers postes de télévision ou aux premiers smartphones.
d'une conduite de petite distance, et celles du cycle « autoroute » représentatif d'une conduite longue distance. Le modèle prend ensuite en compte une répartition différente entre ces courtes et longues distances, suivant le segment du véhicule (plus de courte distance pour une citadine par exemple).

Aujourd'hui, le modèle ne prend en compte que les émissions directes (à l'échappement). A l'avenir, DRIVE²5 prendra en compte les émissions polluantes lors des phases de production, de fin de vie et de recyclages des différentes technologies, permettant d'affiner les résultats obtenus. Pour cela il faudra intégrer les variables spatiales (pays) et temporelles (saison) lors de la conversion des émissions de polluants et lors de la consommation des ressources en impacts environnementaux.

5.3. Parc VL

Cette sous-section illustre les applications possibles du modèle DRIVE²5 par quelques résultats saillants sur l'évolution du parc VL à l'horizon 2050. Avant cela, nous présentons en détail les différents scénarios de politiques publiques retenus pour obtenir les résultats.

5.3.1. Présentation des scénarios

Dans le but d'établir une vision prospective du développement du véhicule électrique en France, plusieurs scénarios ont été construits. Ils décrivent les différentes situations qui pourraient avoir lieu dans le pays sur les deux prochaines décennies, et qui potentiellement joueront un rôle sur le choix des acheteurs. Cette section décrit les scénarios utilisés pour estimer l'effet des politiques publiques sur l'évolution de la part de marché des véhicules électrifiés et leurs conséquences sur les émissions polluantes du secteur transport. Ils s'appuient sur plusieurs sources académiques, sur des dîres d'expert IFPEN ou encore sur des rapports de consultants.

Cinq scénarios contextuels et huit scénarios de politique publique ont été choisis : les six premiers, appelés scénarios contextuels, « agissent » plutôt sur l'offre tandis que les huit suivants « agissent » plutôt sur la demande.

La section 5.3.1.1 présente les cinq scénarios contextuels retenus pour générer les résultats du modèle. Chacun correspond à un policy mix de trois paramètres clefs dans le choix d'achat d'un véhicule neuf donné. La section 5.3.1.2 présente les huit scénarios de politiques publiques retenus. Il est à noter que ces derniers sont orthogonaux des cinq précédents.

5.3.1.1. Les scénarios contextuels

La Figure 79, récapitule les caractéristiques des cinq grands scénarios contextuels retenus.

<table>
<thead>
<tr>
<th>Scenario n°</th>
<th>Développement des bornes de recharge</th>
<th>Prix des énergies fossiles élevé</th>
<th>Progrès important des moteurs thermiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>C</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>D</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>E</td>
<td>☐</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 79 : Ensemble des scénarios contextuels

Les trois paramètres contextuels sont détaillés ci-après :

5.3.1.1.1. Infrastructures de recharge

Même si le nombre de bornes de recharge n'est pas le seul critère qui détermine le choix de l'acheteur en faveur d'un véhicule électrique, il est clair que cet aspect joue un rôle important. La plupart des bornes de recharge en France sont des bornes domestiques dites « lentes », installées chez des particuliers. Cela suffit pour un usage quotidien de son véhicule électrique : il est rechargé chaque soir et prêt à être utilisé le lendemain. Mais pour obtenir un développement important des ventes de VE, il est nécessaire d'avoir
à l'échelle du pays un maillage relativement dense de bornes de recharge publiques. Cela étendrait d’autant le périmètre d’utilisation des VE.

La France fait partie – avec l’Allemagne, les Pays-Bas et la Norvège – des pays européens où le nombre de stations de recharge est le plus important (voir Figure 80). En France on compte environ 30 000 prises publiques au 1er juillet 2020.

![Figure 80: Stations de recharge publique en France – source: chargemap.com (2021)](image)

Deux scénarios fortement contrastés sont envisagés ici. Dans le scénario favorable, l’hypothèse est que 100% des stations-services sont équipées en fast charging en 2040. Dans le scénario pessimiste, seulement 25% des stations-services sont équipées en fast charging en 2040.

5.3.1.1.2. **Prix de l’énergie**

Il est important d’intégrer deux scénarios d’évolution du cours du baril de pétrole d’ici 2040. En effet cela influe directement sur le prix des carburants fossiles à la pompe, et donc sur le calcul du TCO qui sert de base au modèle pour définir le choix des acteurs économiques dans leurs décisions d’achat.

Plus globalement, l’augmentation des prix de l’énergie peut également entraîner une baisse globale de la demande de mobilité à travers un effet prix mais également revenu comme indiqué dans les équations (1) et (2).

Pour construire les scénarios, les projections de l’AIE ont été reprises (Cf. Figure 81). Pour chacun de ces deux scénarios sustainable development et stated policies, il est déduit le coût de production des différents carburants (essence et gazole). Le scénario « Stated Policies » est celui utilisé dans les calculs TCO du lot 2 de l’étude.
5.3.1.3. **Progrès techniques des moteurs thermiques**

L’hypothèse de base prise pour les progrès techniques des moteurs thermiques s’appuie sur une amélioration relative des rendements (environ 15% de gain d’ici 2040), et donc une baisse progressive d’ici 2040 de la consommation de carburant (essence, gazole ou GNV). Il s’agit du scénario de base pour la plupart des simulations de cette étude. Cependant, un autre scénario a été construit, faisant l’hypothèse d’un progrès accru des moteurs thermiques d’ici 2040, porté par la volonté des constructeurs et équipementiers de donner un second souffle aux véhicules thermiques.

La Figure 82 illustre un exemple des consommations utilisées pour les deux scénarios envisagés. Dans le scénario de référence (REF) les progrès techniques permettent de faire baisser les consommations des moteurs thermiques de manière raisonnée et réaliste. Dans le scénario amélioré (AMELIORE) on peut voir que la baisse est plus prononcée.

5.3.1.2. **Les scénarios de politique publique**

Cette section détaille les scénarios de politiques publiques retenus pour l’analyse. La Figure 83 récapitule les caractéristiques de ces scénarios.
On propose à présent de détailler les trois politiques publiques mises en jeu dans ces scénarios.

5.3.1.2.1. Aide à l’achat de véhicules électrifiés
L’aide à l’achat pour les particuliers souhaitant acquérir un véhicule électrifié (BEV ou PHEV) est apparu en France en 2010. Le maximum a été atteint en 2013 pour ensuite diminuer progressivement. Deux scénarios ont été retenus dans notre analyse (Figure 84) :

- Un scénario bas où les primes pour les PHEV sont nulles après 2023, et où les primes pour les BEV disparaissent progressivement pour atteindre 0 en 2027.
- Un scénario haut où les primes à l’achat sont de 1000€ pour les PHEV jusqu’en 2031 et de 5000€ pour les BEV, ceci jusqu’à 2035. Ce scénario est volontairement ambitieux. Il est à noter que les véhicules électriques haut de gamme ne bénéficient que de la moitié de ces aides (comme c’est le cas actuellement).

5.3.1.2.2. Taxe carbone
S’agissant de l’évolution de la taxe carbone, les deux scénarios retenus sont les suivants : un scénario bas avec un gel de la taxe à partir de 2018 à une valeur de 44,6€/t (0,10€/L), et un scénario dit « vert » basé sur une croissance de la taxe carbone jusqu’à 250€/t en 2030, selon la valeur tutélaire du carbone du rapport Quinet (2019).
5.3.1.2.3. Taxe sur les produits pétroliers

En plus de la taxe carbone, il est possible de taxer les carburants fossiles en augmentant directement leur prix à la pompe. En effet ce prix est décomposé entre, d’un côté, les coûts du produit pétrolier, son transport et la marge du distributeur et, d’autre part, les taxes de l’État. Dans le but d’accélérer la transition vers un transport électrifié, les décideurs publics peuvent augmenter la valeur de ces taxes. La Figure 86 montre les scénarios choisis pour le montant de cette taxe pour le gazole d’ici 2040.

Si on observe l’évolution du prix à la pompe de l’essence et du gazole dans le scénario de référence, on peut voir que l’objectif national de convergence du prix de ces deux carburants en 2022 est bien respecté (Figure 87). Avec ces hypothèses le prix du litre atteint environ 2€ en 2040.
5.3.1.3. Arbres des Scénarios

Les scénarios contextuels et les scénarios de politiques publiques viennent d’être présentés. Ils sont utilisés dans les simulations pour i) établir quels sont les principaux leviers de déploiement de l’électrification du transport en France d’ici 2040 et ii) analyser les conséquences en termes de réduction des émissions polluantes de ce secteur.

Au total, la combinaison des cinq scénarios contextuels (A-E) et des huit scénarios de politique publique (1-8) génère 40 scénarios. Ces derniers sont construits selon une logique arborescente où toutes les dimensions de chaque branche sont croisées afin d’évaluer les effets combinés de ces différentes politiques, comme illustré par la Figure 88.

La « branche supérieure » de l’arbre représente le scénario le plus favorable à l’électromobilité : C8. La « branche inférieure » de l’arbre représente le scénario le plus défavorable à l’électromobilité : E1.

La structure du modèle DRIVERs ainsi que les différents scénarios envisagés ayant été présentés, nous illustrons maintenant ce modèle via quelques résultats.
5.3.2. Illustration du modèle DRIVE RS par quelques résultats

Ne pouvant détailler ici l'ensemble des résultats des quarante scénarios envisagés, nous choisissons d'illustrer les résultats saillants du modèle DRIVE RS via la comparaison de scénarios contrastés. Nous comparons dans un premier temps le scénario où aucune politique n'est mise en œuvre, soit le scénario Business As Usual (BAU) E.1., avec le scénario le plus favorable au développement des véhicules électriques, soit le scénario C.8. Dans un second temps, ce sont les scénarios 1 et 8 du scénario contextuel C qui sont comparés entre eux afin d'évaluer l'efficacité des différentes politiques publiques envisagées dans un contexte combinant les éléments les plus favorables à l'électromobilité. Dans un troisième temps enfin, nous intégrons au scénario C.8. deux mesures supplémentaires: l'interdiction des véhicules thermiques en 2035 d'une part et le cas d'une baisse de 10% de la demande de transport routier (due au report modal et, plus généralement, à des changements de comportements des usagers de la route) d'autre part. À chaque fois, nous analysons de manière distincte les conséquences qu'aurait ces deux mesures supplémentaires sur la décarbonation du secteur routier.

5.3.2.1.Comparaison entre le scénario BAU (E.1.) et le scénario pro électromobilité (C.8.)

Cette comparaison vise à évaluer l'effet du scénario le plus favorable à l'électromobilité (le scénario C.8.) sur le parc routier et ses conséquences en termes de réductions des émissions polluantes du secteur transport. Pour ce faire, nous analysons d'abord les taux de pénétration des différentes technologies (ventes) et ses conséquences sur l'évolution de la composition du parc (stock) avant d'en déduire, via l'estimation des consommations d'énergie, les réductions consécutives des émissions de CO₂, de NOX et de particules (PM10).

5.3.2.2. Ventes et stocks

La Figure 89 montre l'évolution des ventes des différentes technologies (gauche) et la composition du parc français qui en découle (droite) entre 2015 et 2050 pour les scénarios E.1. (traits pointillés) et C.8. (traits pleins). Les simulations entre 2015 et 2020 permettent d'évaluer la qualité de la calibration du modèle DRIVE RS par rapport aux données historiques (série triangules). Chaque couleur de courbe correspond à un type de technologie : la légende indique les différentes technologies prises en compte. Dès 2025, on constate un écart de plus de 200 000 ventes de BEV entre les deux scénarios. Cet écart s'amplifie jusqu'en 2040 environ et l'on constate qu'il faut plus de 15 ans entre les deux scénarios pour atteindre 600 000 ventes / an (2028 pour C8 contre 2045 pour E1).

A partir de 2030, les améliorations techniques des batteries et leur recyclage diminuent par palier le coût des BEV. On retrouve ce phénomène sur les ventes (Figure 89, gauche). Notons que, même dans le scénario le plus favorable à l'électromobilité, C.8., mais qui ne considère pas d’interdiction, il y aura toujours environ 500 000 ventes par an de moteurs thermiques (essence et Diesel) en 2040. À l’échelle du parc cette fois, il en restera en 2040 environ 11 millions. En effet, un nouveau véhicule met en moyenne plus de quinze ans à « sortir » du parc. Ce constat semble indiquer que pour décarboner rapidement le secteur transport, les politiques les plus efficaces d'un point de vue environnemental seront celles qui viseront à faire sortir du parc les véhicules les plus polluants/anciens.

Etude énergétique, économique et environnemental du transport routier à l’horizon 2040 (E4T2040) 1031
5.3.2.3. Consommation d’énergie et analyse environnementale

La Figure 90 montre d’une part l’évolution des émissions de CO₂ (à l’échappement) du secteur transport pour les deux scénarios E1 et C8 (gauche) et d’autre part la contribution de chacune des technologies à ces émissions (droite). Entre 2020 et 2040, même si rien n’est fait en matière de politiques publiques (scénario E1), les émissions de CO₂ dues aux véhicules particuliers passent de 68 Mt à 40 Mt. Cette baisse de plus de 40% des émissions s’explique par l’incorporation « naturelle » des technologies low-carbon dans le parc. Par rapport à ce scénario Business As Usual, l’introduction des mesures de politiques publiques volontaires combinées à un contexte favorable (scénario C.8.) permettent de ramener les émissions de CO₂ à 28 Mt en 2040, soit une baisse de près de 60% par rapport à 2020 et de 30% supplémentaires par rapport aux émissions de 2040 du scénario E1.

Malgré une baisse importante des émissions de CO₂, la neutralité carbone n’est pas atteinte en 2050. Le poids des moteurs thermiques est encore majoritaire dans les émissions de CO₂ jusqu’en 2040 (Figure 90, droite). La chute constatée de leurs ventes (Figure 89, gauche), même importante, met du temps à se retrouver dans la composition du parc et, donc, à engendrer les effets escomptés sur la réduction des émissions de CO₂. Plus préoccupant encore, aucun de ces scénarios ne permet d’atteindre l’objectif intermédiaire « Fit for 55 » de 2030 fixé par la Commission Européenne, point de passage pour atteindre cette neutralité carbone en 2050 (Figure 90, gauche)\(^\text{11}\).

![Objectif intermédiaire 2030: -55% / 1990 (révisé suite dernières annonces CE)](image1)

![Scénario E1](image2)

![Scénario C8](image3)

Emissions totales du parc VL (TTW)

Contribution par technologie

Figure 90 : évolution temporelle des émissions de CO₂ en TTW du parc (à gauche) et par technologie (à droite) pour les scénarios E1 (lignes en pointillés) et C8 (lignes continues)

Comme l’indique la Figure 91, le modèle DRIVE\(^\text{RS}\) permet également de représenter l’évolution des NOX et des PM 10. Même s’il s’agit de polluants locaux, le fait de suivre les évolutions des émissions à l’échelle de tout le parc permet de mettre en évidence le renouvellement de celui-ci. On peut aussi remarquer que le modèle DRIVE\(^\text{RS}\) estime de manière très convenable ces émissions sur la période historique 2014-2020.

\(^\text{11}\) Fixé à 2030, et révisé suite aux dernières annonces de la C.E., cet objectif est de – 55% d’émissions de Gaz à Effet de Serre (GES) par rapport à 1990.
5.3.2.3.1. Comparaison entre scénarios : Focus sur les scénarios du Scénario Contextuel C

La présente Section compare les résultats des scénarios 1 et 8 du scénario contextuel C. Nous cherchons ainsi à évaluer l’efficacité des différentes politiques publiques envisagées (scénarios 1 à 8, cf. Figure 83) dans un contexte combinant les éléments les plus favorables à l’électromobilité (scénario contextuel C, cf. Figure 79). Après avoir présenté l’évolution des ventes et des stocks pour ces deux scénarios (Figure 92), nous en illustrons les conséquences i) en termes de consommation d’énergie/carburant (Mtep) pour chaque mode de propulsion (Figure 93) et ii) en termes de réductions des émissions de CO₂ (Figure 94).

5.3.2.3.2. Ventes et stocks

Comparé au scénario C1, l’effet cumulé des politiques publiques visant à agir sur la demande de véhicules électriques (scénario C8) se retrouve dès 2025 au niveau des ventes de ces véhicules (Figure 92, gauche). A partir de cette date en effet les deux scénarios divergent, avec des ventes supérieures chaque année pour le scénario C8 conduisant à atteindre un écart entre les deux scénarios d’environ 100 mille véhicules électriques vendus en 2040 (700 mille pour le scénario C1 vs. 800 mille pour le scénario C8). C’est entre 2030 et 2035 que le point de bascule se fait entre les ventes de véhicules thermiques (Diesel et essence) et de véhicule électrique. Au niveau des stocks (Figure 92, droite), les politiques incitatives envisagées permettent d’atteindre ce point de bascule entre 2040 et 2045 avec environ 10 millions de véhicules thermiques et 10 millions de véhicules électriques dans le parc, le reste (entre 13 et 14 millions) étant composé de véhicules hybrides.
5.3.2.3.3. Consommation d’énergie et analyse environnementale

Une fois connu la composition du parc, les cycles de roulage (longue distance et courte distance selon la taille du véhicule) et les rendements énergétiques de chaque technologie, il est possible de calculer la consommation d’énergie finale du parc et ce, par type de carburant (Figure 93). On peut voir que les carburants fossiles historiques du parc (essence et gazole) vont voir leur consommation diminuer. Des hypothèses de taux d’incorporation en biocarburants conservatrices ont été retenues (7% du pool). La consommation d’électricité augmente dans le parc d’ici 2050 mais elle reste dans des proportions faibles : environ 2.2 Mtep si on somme la partie renouvelable et la partie non renouvelable (à comparer aux 17 Mtep de gazole consommé aujourd’hui). Cela est dû au meilleur rendement des moteurs électriques comparés à celui des moteurs thermiques.

La consommation électrique annuelle de 2.2 Mtep correspond à 25.6 TWh, soit environ 6% de la consommation nationale annuelle d’électricité actuelle.

Au niveau de la puissance appelée, si les 20 millions de véhicules électrifiés se rechargent en même temps sur le réseau avec une recharge domestique de 3kW (cas très peu probable mais qui correspond à la pire situation), cela amènerait une demande de 60 GW, soit 98% de la puissance installée du parc nucléaire français actuel.

Figure 93 : calendrier de la consommation de carburants associées aux différentes technologies composant le parc. Les consommations associées au scénario C1 et C8 sont représentées. Pour chaque carburant, il est possible de distinguer la part fossile et la part renouvelable (nommée bio sur la figure)

En 2040, le scénario le plus favorable à l’électromobilité (C8) permet de réduire les émissions de CO₂ à l’échappement de près de 60% par rapport à 2020 (Figure 94, gauche). 28 millions de tonnes de CO₂ sont
néanmoins toujours émises dans ce scénario en 2040. Ceci s’explique par la présence encore importante des véhicules thermiques dans le parc. A eux seuls les véhicules essence et Diesel représentent environ 20 millions de tonnes de CO₂ en 2050 (Figure 94, droite), soit plus des deux tiers des émissions totales du secteur.

Figure 94 : évolution temporelle des émissions de CO₂ en TTW du parc (à gauche) et par technologie (à droite) pour les scénarios C1 et C8

5.3.2.3.4. L’interdiction des véhicules thermiques en 2035: conséquences sur l’électromobilité et la décarbonation du secteur

Nous nous intéressons ici aux conséquences sur le parc français de l’introduction de la mesure d’interdiction des ventes de véhicules thermiques (essence et Diesel) à l’horizon 2035. Les résultats de notre simulation (scénario C.8. avec interdiction) sont comparés au cas de référence qui correspond à un contexte favorable pour l’émergence de l’électromobilité (scénario C.8. sans interdiction).

5.3.2.3.5. Ventes et stocks

La Figure 95 (gauche) compare l’évolution des ventes en France du scénario de référence C.8. (trait plein) et de ce même scénario suite à l’introduction de la mesure (traits pointillés). L’arrêt des ventes des véhicules essence et Diesel est effectif en 2035 avec un décrochage important dès 2025 (les ventes de ces véhicules diminuent de moitié par rapport au scénario de référence). Les ventes de technologies moins polluantes augmentent proportionnellement avec une croissance, comparée avec le scénario de référence, de 14% des ventes de véhicules hybrides et hybrides rechargeables et de 7% des ventes de véhicules électriques. En 2040, les BEV atteignent un million de ventes par an. Cette mesure a donc un fort impact sur les ventes. Comment cela se traduit-il sur la composition du parc ? Le nombre de véhicule électrique est supérieur au nombre de véhicule Diesel à partir de 2034 dans notre scénario C.8. avec interdiction (Figure 95, droite). Cette mesure d’interdiction profite également aux véhicules hybrides et hybrides rechargeables. Enfin, la disparition totale des véhicules essence et Diesel dans le parc n’est manifeste qu’en 2050 (Figure 95, droite), ce qui représente 15 ans de latence.
5.3.2.3.6. Analyse environnementale

La Figure 96 montre l'évolution des émissions de CO₂ du parc automobile français dans le cadre du scénario de référence C.8, (trait plein) et de ce même scénario suite à l’introduction de la mesure (traits pointillés). L’effet de cette politique sur la décarbonation du secteur du transport est très important puisqu’elle permet de réduire les émissions de CO₂ de 20% par rapport au scénario de référence C.8 en 2040 (Figure 96, gauche). Par ailleurs, cette mesure permet d’approcher la neutralité carbone du secteur transport en 2050 avec des émissions de CO₂ inférieures à 15 millions de tonnes (Figure 96, gauche). Ce reliquat d’émissions est entièrement dû aux véhicules HEV et PHEV qui composent encore le parc (Figure 96, droite). Ces résultats tendent à souligner l’efficacité des politiques publiques visant à faire sortir du parc les véhicules les plus polluants, même si cette mesure n’est pas suffisante pour atteindre l’objectif de réduction en 2030.

5.3.2.4. Effet d’une baisse de la demande de véhicules ?

Dans cette section, nous analysons le cas d’une baisse de 10% de la demande de transport routier pour illustrer les conséquences que pourraient avoir un changement tangible des comportements des usagers de la route si une partie d’entre eux reportaient leurs mobilités vers des solutions alternatives (report
modal, autopartage, etc.). Cette hypothèse se traduit dans notre modèle par la modification des courbes enveloppes de la demande de transport (équations (1) et (2)).

La Figure 97 indique le nombre de véhicules particuliers (stock global) du parc automobile français dans le cadre du scénario de référence C8 (trait plein) et avec une baisse d’environ 10% de l’effectif du parc en 2040 (traits pointillés). Ce nombre de véhicules correspond également par construction à la demande en véhicules calculée par le modèle. Cette baisse du stock global est-elle synonyme d’une baisse du nombre de véhicules thermiques ? Pour cela regardons la figure des stocks par technologies (Figure 98, droite).

![Figure 97: -10% sur demande de véhicules en 2040 (changement de comportements, courbe en traits pointillés)](image)

5.3.2.4.1. Ventes et stocks

D’après la Figure 98, une baisse de la demande de véhicule telle que modélisée ici (-10 % pas immédiatement mais à l’horizon 2040) se reporte majoritairement non pas sur les véhicules thermiques mais sur les BEV, les HEV et les PHEV c’est-à-dire les véhicules bas carbone. La raison en est simple : la baisse du stock global ne commence réellement à être conséquente qu’à partir de 2030-2035 (Figure 96). Or en 2035, dans le scénario de référence C8, la part de marché de l’ensemble des véhicules bas carbone représente déjà environ 75% des nouvelles ventes (Figure 97, gauche). C’est donc sur le développement de ces technologies que va peser en premier lieu la baisse de la demande globale ; celle-ci intervenant « trop tard ».

Etude énergétique, économique et environnemental du transport routier à l’horizon 2040 (E4T2040) 109
5.3.2.4.2. Analyse environnementale

Cette baisse de la demande de mobilité ralentit donc finalement le renouvellement du parc et freine la pénétration des véhicules vertueux en se reportant majoritairement sur les technologies bas carbone. Comme l’indique la Figure 99, ce report permet d’expliquer qu’une baisse de la demande de véhicules due à un changement de comportement, si elle n’intervenait que tardivement (2040 dans cet exercice), n’aurait qu’un impact limité sur la décarbonation du secteur comparé au scénario CB de référence. Ce résultat milité pour la mise en place plus rapide de politiques publiques volontaires favorables à une mobilité partagée (report modal, autopartage, etc.).

5.3.3. Discussion & conclusions

L’analyse prospective du parc automobile français de véhicules légers à l’aide du modèle DRIVE5 permet de tirer plusieurs enseignements.

Même dans le cas du scénario le plus favorable à la vente de véhicule électrifié (scénario C.8), les objectifs du Green Deal (~90% d’émissions de CO₂ du parc en 2050 par rapport à 1990) ne sont pas atteints. En effet les émissions de CO₂ seront égales en 2050 à 21 Mt. Pour rappel elles étaient de 70 Mt en 1990.
Il faut ajouter à ce scénario C.8 l’interdiction des ventes de véhicules thermiques en 2035 pour se rapprocher de l’objectif de réduction de 90% en 2050. Dans ce dernier scénario, les émissions de CO₂ atteindront 11,4 Mt en 2050. Avec des politiques de soutien à l’autopartage, et/ou l’utilisation accrue des biocarburants, l’objectif du Green Deal pourrait ainsi être tenu.

Plus surprenant, une baisse de la demande de véhicules due à un changement des comportements (-10% en 2040) n’a que peu de conséquences sur la décarbonation de ce secteur. Cette baisse de la demande de mobilité ralentit le renouvellement du parc et freine la pénétration des véhicules vertueux en se reportant majoritairement sur les technologies bas carbone.

Par ailleurs, l’objectif récent fixé par la Commission Européenne « Fit for 55 », à savoir une baisse des émissions de CO₂ de 55% dès 2030, est difficilement atteignable. En moins d’une décennie il apparaît difficile de changer suffisamment le parc français pour valider cet objectif. À court terme l’incorporation accrue de biocarburants (directement utilisables par la grande majorité des véhicules du parc) et un changement de réglementation (prenant en compte l’origine biogénique du CO₂ émis par la combustion des biocarburants) pourraient améliorer ce constat.

Au final, le modèle DRIVE⁵ nous enseigne qu’avant même de chercher à faire rentrer des véhicules bas carbone dans le parc, les politiques les plus efficaces pour décarboner le secteur du transport routier sont d’abord celles qui visent à faire sortir du parc les véhicules anciens, les plus polluants. Ces politiques permettraient ainsi d’améliorer rapidement la qualité de l’air, tout en contribuant efficacement à la décarbonation du transport routier.

Un autre avantage du modèle DRIVE⁵ est d’effectuer des bilans « coûts/gains CO₂ » pour plusieurs scénarios de politique publique. C’est ce que montre la Figure 100. Les cinq scénarios structurels sont représentés (de A à E). Le graphique montre pour chacun d’eux les émissions cumulées de CO₂ (d’aujourd’hui à 2050) en fonction du coût ou des revenus cumulés des différents leviers économiques. Les dépenses correspondant aux primes à l’achat s’élèvent en cumulé à 30 Milliards d’Euros. Cela représente une moyenne de 700 Millions d’Euros par an. En comparaison, le gouvernement français a versé l’équivalent de 600 Millions d’Euros de primes à l’achat en 2019. Au niveau de la TICPE, on pourrait penser voir celle-ci diminuer avec la baisse des consommations nationales d’essence et de gazole. Cependant, comme la TICPE augmente dans nos scénarios, l’assiette est certes plus faible mais cela est compensé par une taxe plus élevée par litre de carburant vendu. Par ailleurs, deux solutions sont envisageables pour améliorer la trésorerie de l’État : augmenter les recettes liées à la taxe carbone (en prenant garde toutefois à l’acceptation sociétale) ou répercuter de la TICPE sur les carburants alternatifs bas carbone (électricité et hydrogène).
5.4. Parcs PL

5.4.1. Mise en contexte

5.4.1.1. Documents de références

Le paragraphe repose sur les analyses issues de deux documents récents traitant du transport de marchandises à l’échelle nationale et européenne :

De nombreux paramètres ont été étudiés, comme le nombre de tonnes transportées, la demande d’énergie finale ou la place des différents vecteurs énergétiques, trois dimensions qui peuvent être traitées par le modèle DRIVER5, mais aussi la part du rail, dans une approche bimodale.

2) La rapport 1 du GT sur l’ERS (Electric Road System) mandaté par le ministère des transports (https://www.ecologie.gouv.fr/autoroute-electrique).

5.4.1.2. Rappels des objectifs de la SNBC (Extrait rapport 1 du GT sur l’ERS)

Tout d’abord rappelons que l’objectif de la France est une décarbonation complète des transports terrestres à cet horizon 2050. L’Union européenne a fixé un objectif intermédiaire de réduction de 55 % des émissions en 2030 par rapport à 1990. Son règlement 2019/1242 impose aux constructeurs de camions une réduction des émissions de CO2 des poids lourds neufs vendus en 2030 de 30 % par rapport à 2020 sous peine de pénalités substantielles. Le 14 Juillet 2021, la Commission européenne a proposé de sévérer la réduction demandée des émissions des VP et VUL à -55 % et -50 % de 2021 à 2030 alors qu’elles étaient de -37,5 % et -31 % dans le règlement de 2019. Mais elle n’a pas proposé de sévérisations de l’objectif pour les poids lourds.
Le scénario de référence de la stratégie nationale bas carbone (SNBC2) fait l’hypothèse que le transport routier passera de ≈ 500 TWh, essentiellement du gazole, à 200 TWh en 2050, pour moitié en électricité, pour un quart en biocarburants et pour un quart en gaz naturel et gazole (Figure 101).

![Figure 101: Consommation d'énergie et émissions de GES des transports en 2015, 2030 et 2050. Hypothèses retenues au 1er janvier 2020 par la Stratégie Nationale Bas Carbone en métropole (MTE, 2020)](image)

A l’horizon 2050, le besoin en biodiesel et en biogaz (utilisés par les transports lourds), tel que prévu par le scénario de référence qui suppose la coexistence avec des PL électriques, est respectivement de 35 TWh et 40 TWh. Les besoins énergétiques de l’ensemble PL, bus et VUL sont pour leur part évalués à 95 TWh toutes énergies confondues (respectivement 57 TWh, 9,3 TWh et 29 TWh).

5.4.1.2.1. Spécificités sur transport de marchandises

Le fonctionnement du transport de marchandises est intimement lié aux interactions structurant les chaînes logistiques. Ces dernières ayant pour fonction d’offrir aux clients un niveau de service correspondant à leurs préférences, à un coût acceptable. À la différence du transport de voyageurs, le transport de marchandises, qui n’est jamais une fin en soi, dépend du contexte dans lequel il s’inscrit et conditionne le fonctionnement des chaînes logistiques. Ainsi nous pouvons noter l’importance des contraintes industrielles, des réglementations, de la disponibilité de ressources naturelles et des infrastructures. De même les logiques d’implantation des établissements influencent la morphologie des chaînes logistiques.

Le transport de marchandises implique par ailleurs une diversité de modes, de véhicules, de réseaux, et d’entreprises. Cette diversité reflète d’une part la pluralité des besoins logistiques pouvant être liée à la nature des biens et aussi l’hétérogenéité des contextes géographiques (zones de production, zone d’importation, zone de consommation...). Pour saisir cette complexité du transport de marchandises, plusieurs typologies peuvent ainsi être adoptées pour le décrire :

1) **Typologie de transport basée sur la nature du commerce associé au bien** (national, import auxquels s’ajoutent l’export et le transit). Ces types de transports permettent de caractériser des dynamiques très différentes.
 a. National
 le transport national représente tout transport qui s’effectue entre un lieu de chargement et un lieu de déchargement situés en France, quel que soit le pavillon du véhicule.
 b. Imports
 le transport import représente tout transport qui s’effectue entre un lieu de chargement à l’étranger et un lieu de déchargement en France, quel que soit le pavillon du véhicule.
 c. Exports
 le transport export représente tout transport qui s’effectue entre un lieu de chargement en France et un lieu de déchargement à l’étranger, quel que soit le pavillon du véhicule.
d. **Transit**
le transport transit représente tout transport qui s'effectue entre un lieu de chargement à l'étranger et un autre lieu de déchargement à l'étranger et qui traverse une partie du territoire français, quel que soit le pavillon du véhicule.

2) **Typologie de transport basée sur la structure de production (locale, centralisée...)** qui peut se traduire par une **typologie des distances**. Selon le rapport de l’IDDRI, des gammes de distances ont été choisies pour représenter l’organisation spatiale de la demande de transport et pouvoir considérer des réalités logistiques différentes sur le facteur de charge.
 a. **Fret local et urbain (moins de 50 km)**
 Cette gamme de distance caractérise des déplacements de courte distance, plus souvent en zone urbaine.
 b. **Fret intrarégional (50-150 km)**
 Cette gamme de distance caractérise des déplacements de distances de parcours réalisés en moyenne à la maille régionale (par exemple Nantes-Angers ou Lyon-Grenoble).
 c. **Fret interrégional proche (150-500 km)**
 Cette gamme de distance correspond à des distances qui peuvent être interrégionales suivant la taille des régions mais aussi supérieures à la taille d’une région (par exemple Lille-Paris ou Le Mans-Paris) et caractérise des déplacements interrégionaux.
 d. **Fret interrégional longue distance (plus de 500 km)**
 Cette gamme de distance correspond à des distances nationales importantes (par exemple Quimper-Paris ou Bordeaux-Paris).

3) Selon les distances, on peut définir une **typologie de véhicules**. Pour des raisons évidentes de coûts, de gros véhicules sont associés aux longs trajets, alors que les petits véhicules seront réservés aux dessertes locales. Ainsi les véhicules de transport de marchandises routiers ont été segmentés en cinq types de véhicules en fonction de leur poids total autorisé en charge (PTAC12).
 a. **deux types de véhicules utilitaires légers (VUL)**
 VUL < 2,5 PTAC : Véhicules utilitaires légers pouvant peser au maximum 2,5t et transporter environ jusqu’à 0,75 tonne de charge utile.
 VUL > 2,5 PTAC : Véhicules utilitaires légers pouvant peser entre 2,5t et 3,5t et transporter jusqu’à 1,2 tonne de charge utile.
 b. **trois types de poids lourds (PL)**
 PL <= 19 t PTAC : Poids lourds rigides pouvant peser au maximum jusqu’à 19 t et transporter jusqu’à environ 9 t de charge utile.
 PL > 19 t PTAC : Poids lourds rigides pouvant peser entre 21 à 26t et plus et transporter plus de 9 t de charge utile.
 PL Articulé : Poids lourds articulés pouvant peser entre 34t et 44t et transporter au maximum jusqu’à environ 25 tonnes de charge utile pour les plus importants.

La présentation de ces différents éléments souligne les différences profondes qui existent entre le transport de personnes dans des véhicules particuliers et le transport routier des marchandises. Après avoir évoqué différentes typologies possibles du transport de marchandise, il apparaît que la focalisation classique sur les améliorations technologiques et les solutions basées sur les changements de carburants, est restrictive et ne permettra pas d’appréhender les mutations du transport routier des marchandises. Il conviendrait de développer une analyse systémique de tous les déterminants des transformations du secteur, notamment les évolutions des infrastructures, de l’organisation de l’espace, des stratégies logistiques, ainsi que les évolutions des comportements, des modes de vie.

Selon les différentes typologies présentées, l’utilisation d’une modélisation par choix discret emboîtés peut sembler adaptée. Pour un type de commerce il y a la possibilité d’associer une typologie de distances, et la possibilité d’associer une typologie de véhicules par type de distances... Pour procéder ainsi il conviendrait de travailler avec une typologie des biens qui déterminerait les types de commerce, et d’avoir une analyse spatialisée des différents noyaux structurant la chaîne logistique...

12 Définition PTAC : le poids total autorisé en charge est la masse maximale autorisée pour un véhicule routier. Elle comprend le poids du véhicule à vide, la charge maxime de marchandises (charge utile) ainsi que le poids maximal du chauffeur et des passagers.
Une approche détaillée sur toutes les typologies présentées dépasse le cadre de ce projet. L’approche développée dans ce rapport, reprend celle utilisée pour les VP en considérant 3 tailles (Figure 102) :

![Véhicule Utilitaire Léger (VUL)](image1.png)
Véhicule Utilitaire Léger (VUL)
PTAC < 3,5t

![Poids lourd moyen (MFT)](image2.png)
Poids lourd moyen (MFT)
PTAC < 19t

![Poids lourd articulé (HFT)](image3.png)
Poids lourd articulé (HFT)
PTAC > 19t

Figure 102 : Trois types de véhicules ont été définis

5.4.1.2.2. Le transport par poids lourds : une stratégie européenne

Dans la note « Le transport routier de marchandises européen en 2017 » publiée par le Ministère de la Transition Ecologique en 2019, on peut lire :

« Les pavillons des pays de l’Est, plus spécialisés dans les transports internationaux, assurent plus de la moitié de leur transport routier de marchandises en Europe (en tonnes kilomètres) sur des distances supérieures ou égales à 500 km. À l’inverse, les pavillons des pays d’Europe occidentale interviennent davantage sur les trajets de courtes et moyennes distances, à l’image du pavillon français : 46 % de son activité est réalisée sur des distances comprises entre 150 km et 500 km et 26 % sur des distances inférieures à 150 km. »

Très clairement, on comprend que le transport routier de marchandises est pensé et organisé à l’échelle européenne. Les coûts bas d’une main d’œuvre qualifiée ainsi que les plans de développement des infrastructures ont conduit à une surréprésentation des pays de l’Europe de l’Est dans le transport routier de marchandises, entraînant une forte compétition entre pavillons. Selon le Ministère de la Transition

14 Cabotage : transport entre deux points d’un même pays effectué par un véhicule immatriculé dans un autre pays. L’activité de cabotage réalisée par un pavillon s’opère à l’étranger, elle est donc classée comme un transport international. Mais elle concurrence le transport national (des autres pavillons).
Ecologique, le cabotage (6,9 % du transport national français) est assuré à 22 % par le pavillon espagnol et à 18 % par le pavillon polonais. Selon le Tableau 23, le rapport t.km transporté par le PIB illustre macroscopiquement très clairement ces mécanismes, il est très élevé pour les pays d’Europe de l’Est.

La Commission européenne publiera fin 2021 les révisions du RTE-T avec pour objectif la nécessité d’achever le réseau central d’ici 2030 (Figure 103). L’éventuelle intégration d’un système ERS au réseau central européen (Figure 104) modifiera en profondeur le parc poids-lourds.

Extrait du rapport GT1 ERS :
« Le développement du réseau ERS proposé est basé sur trois principes : a) le caractère résolument européen d’une telle infrastructure, b) l’universalité du poids lourd qui doit pouvoir desservir tous les territoires, c) l’échéance de 2030 lors de laquelle une première phase d’ERS devrait être en place pour permettre aux constructeurs de vendre assez de camions neufs à zéro émission (dont des camions électriques à ERS), afin de réduire de 30 % leurs émissions par rapport à 2020. Ainsi, en deux phases, 4 900 km de réseau en 2030 puis 8 850 km en 2035 seraient équipés. La première phase correspond au réseau transeuropéen de transport tel que défini par la Commission européenne augmenté d’un axe Paris-Rennes pour la desserte de la Bretagne et la deuxième, d’environ 4 000 km s’ajoutant aux 4 900 km de la 1ère phase, permettrait l’accès au réseau équipé ERS depuis tout point du territoire en moins de 125 km, cette distance correspondant à la moitié de l’autonomie des PL équipés pour l’ERS pris en hypothèse. »

Tableau 23 : transport routier de marchandises par pavillon en 2018 (CNR, 2020, « Classement TRM européen 2018 »)

<table>
<thead>
<tr>
<th>Rang</th>
<th>Pavillon</th>
<th>Millions de Lkm</th>
<th>Poids dans l’ensemble</th>
<th>% par rapport au premier</th>
<th>Évolution 2018/2017</th>
<th>Ratio Lkm/PIB*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Allemagne</td>
<td>336 772</td>
<td>16,2%</td>
<td>100%</td>
<td>1,2%</td>
<td>95</td>
</tr>
<tr>
<td>2</td>
<td>Pologne</td>
<td>315 830</td>
<td>16,1%</td>
<td>100%</td>
<td>-5,8%</td>
<td>68</td>
</tr>
<tr>
<td>3</td>
<td>Espagne</td>
<td>238 954</td>
<td>12,3%</td>
<td>75%</td>
<td>3,4%</td>
<td>136</td>
</tr>
<tr>
<td>4</td>
<td>France</td>
<td>173 347</td>
<td>8,9%</td>
<td>55%</td>
<td>3,4%</td>
<td>121</td>
</tr>
<tr>
<td>5</td>
<td>Royaume-Uni</td>
<td>150 157</td>
<td>8,1%</td>
<td>50%</td>
<td>3,4%</td>
<td>169</td>
</tr>
<tr>
<td>6</td>
<td>Italie</td>
<td>124 915</td>
<td>6,4%</td>
<td>39%</td>
<td>4,4%</td>
<td>71</td>
</tr>
<tr>
<td>7</td>
<td>Pays-Bas</td>
<td>68 876</td>
<td>3,5%</td>
<td>22%</td>
<td>2,0%</td>
<td>198</td>
</tr>
<tr>
<td>8</td>
<td>Roumanie</td>
<td>50 702</td>
<td>2,6%</td>
<td>19%</td>
<td>7,4%</td>
<td>290</td>
</tr>
<tr>
<td>9</td>
<td>Lituanie</td>
<td>41 950</td>
<td>2,2%</td>
<td>14%</td>
<td>11,5%</td>
<td>956</td>
</tr>
<tr>
<td>10</td>
<td>Suède</td>
<td>41 478</td>
<td>2,2%</td>
<td>14%</td>
<td>3,9%</td>
<td>85</td>
</tr>
<tr>
<td>11</td>
<td>Tchéquie</td>
<td>41 073</td>
<td>2,1%</td>
<td>13%</td>
<td>-7,2%</td>
<td>196</td>
</tr>
<tr>
<td>12</td>
<td>Hongrie</td>
<td>37 948</td>
<td>1,9%</td>
<td>12%</td>
<td>-4,8%</td>
<td>218</td>
</tr>
<tr>
<td>13</td>
<td>Slovénie</td>
<td>35 586</td>
<td>1,8%</td>
<td>11%</td>
<td>0,5%</td>
<td>395</td>
</tr>
<tr>
<td>14</td>
<td>Portugal</td>
<td>32 963</td>
<td>1,7%</td>
<td>10%</td>
<td>-3,6%</td>
<td>163</td>
</tr>
<tr>
<td>15</td>
<td>Belgique</td>
<td>32 683</td>
<td>1,7%</td>
<td>10%</td>
<td>-4,5%</td>
<td>173</td>
</tr>
<tr>
<td>16</td>
<td>Slovénie</td>
<td>29 279</td>
<td>1,5%</td>
<td>9,2%</td>
<td>3,2%</td>
<td>110</td>
</tr>
<tr>
<td>17</td>
<td>Finlande</td>
<td>28 345</td>
<td>1,4%</td>
<td>8,9%</td>
<td>1,4%</td>
<td>112</td>
</tr>
<tr>
<td>18</td>
<td>Bulgarie</td>
<td>28 950</td>
<td>1,4%</td>
<td>8,5%</td>
<td>-23,3%</td>
<td>498</td>
</tr>
<tr>
<td>19</td>
<td>Autriche</td>
<td>25 763</td>
<td>1,3%</td>
<td>8,1%</td>
<td>-0,8%</td>
<td>67</td>
</tr>
<tr>
<td>20</td>
<td>Serbie</td>
<td>22 225</td>
<td>1,1%</td>
<td>7,0%</td>
<td>6,8%</td>
<td>464</td>
</tr>
<tr>
<td>21</td>
<td>Norvège</td>
<td>21 338</td>
<td>1,1%</td>
<td>6,7%</td>
<td>-0,2%</td>
<td>58</td>
</tr>
<tr>
<td>22</td>
<td>Danemark</td>
<td>14 998</td>
<td>0,8%</td>
<td>4,7%</td>
<td>-3,3%</td>
<td>58</td>
</tr>
<tr>
<td>23</td>
<td>Lettonie</td>
<td>14 997</td>
<td>0,8%</td>
<td>4,7%</td>
<td>0,2%</td>
<td>508</td>
</tr>
<tr>
<td>24</td>
<td>Croatie</td>
<td>12 635</td>
<td>0,6%</td>
<td>4,0%</td>
<td>6,0%</td>
<td>265</td>
</tr>
<tr>
<td>25</td>
<td>Suisse</td>
<td>12 500</td>
<td>0,6%</td>
<td>3,9%</td>
<td>4,6%</td>
<td>11</td>
</tr>
<tr>
<td>26</td>
<td>Lichtenberg</td>
<td>11 600</td>
<td>0,6%</td>
<td>3,7%</td>
<td>-2,0%</td>
<td>16</td>
</tr>
<tr>
<td>27</td>
<td>Luxembourg</td>
<td>8 800</td>
<td>0,3%</td>
<td>2,2%</td>
<td>-16,0%</td>
<td>116</td>
</tr>
<tr>
<td>28</td>
<td>Estonie</td>
<td>5 775</td>
<td>0,3%</td>
<td>1,8%</td>
<td>-6,7%</td>
<td>215</td>
</tr>
<tr>
<td>29</td>
<td>Chypre</td>
<td>852</td>
<td>0,0%</td>
<td>0,3%</td>
<td>8,0%</td>
<td>63</td>
</tr>
</tbody>
</table>

TOTAL 1 959 095 100,0% 0,0% 118
Figure 103 : réseau central européen (https://op.europa.eu/webpub/eca/special-reports/core-road-network-9-2020/fr/)

Figure 104 : Proposition de développement d’un réseau ERS à l’échelle de la France en accord avec le réseau central européen (extrait du rapport GT1 ERS)

5.4.1.2.3. Etat des lieux sur les différentes filières énergétiques alternatives

Le rapport du GT « Systèmes de routes électriques » intitulé « Décarboner le transport routier de marchandises par l’ERS » publié cet été, fournit un état des lieux complet et récent des différentes filières...
Énergétiques qui peuvent être envisagées pour le transport routier de marchandises. Les principaux éléments du rapport sont repris ici et vont nous servir pour élaborer nos scénarios.

Nous pouvons néanmoins annoncer que :

- À la différence du transport routier des véhicules particuliers, aujourd’hui aucune technologie alternative n’affiche de maturité suffisante pour être déployée de façon industrielle à l’échelle d’un parc national, exceptée les biocarburants pour lesquels des questions de concurrence avec d’autres secteurs du transport peuvent se poser.

- La dimension européenne du transport des poids lourds (en particulier articulés) nécessite la mise en œuvre d’une interopérabilité des systèmes énergétiques envisagés. Si des démonstrations à l’échelle d’un territoire peuvent être citées (Bus Hydrogène dans la ville de Pau par exemple), la transposition de telles solutions à l’échelle nationale ou européenne, n’est pas évidente.

- Peu de véhicules alternatifs aux véhicules Diesel sont aujourd’hui proposés par les constructeurs, excepté quelques modèles électriques ou roulant au gaz naturel pour la catégorie des VUL.

 ○ Ainsi il est impossible de calibrer des coefficients d’adoption pour les nouvelles technologies, comme nous le faisons pour les véhicules électriques ou hybrides dans le cas des véhicules particuliers.

 ○ L’analyse bibliographique du GT « Systèmes de routes électriques » a mis en évidence les incertitudes fortes sur les coûts des PL hydrogène (facteur de plus de 2 selon les études).

- La solution électrique à pile à combustible et hydrogène (propre et issu d’électrolyse de l’eau), outre sa forte consommation d’énergie électrique, son indisponibilité en masse et à coût compétitif ne semble pas constituer une solution de décarbonation crédible avant 2030.

- « Parmi les trois solutions d’ERS (Electric Road System) la solution avec caténaire est la plus avancée techniquement [...] La solution rail, très avancée aussi, permettrait, de plus, l’alimentation des véhicules légers, Voitures Particulières (VP) et Véhicules Utilitaires Légers (VUL) [...]. Quant à la solution à induction, également plus universelle, il reste à démontrer qu’elle est capable d’atteindre le niveau de puissance de recharge nécessaire pour un tracteur de 44 t [...]. »

Eléments extraits du rapport du GT1 sur l’ERS :
L’électrification des véhicules légers routiers, voitures particulières (VP) et véhicules utilitaires légers (VUL) est la principale voie envisagée de décarbonation [...].

Pour les poids lourds (PL), les principales solutions envisageables de décarbonation sont le biogaz, le biodiesel, l’électricité à batterie, l’électricité à batterie et réservoir d’hydrogène ou bien l’électrique à batterie et alimentation en roulant (autoroute électrique ou Electric Road System, ERS).

Le biogaz et le biodiesel pourraient répondre aux besoins, mais ces solutions comportent plusieurs risques majeurs : leur disponibilité n’est pas assurée, aussi bien vis-à-vis du gisement dont l’estimation est difficile, que de la concurrence entre usages : chauffage, production électrique et industrie pour le biogaz, aviation pour les biocarburants. [...] les fuites inhérentes aux processus de production, stockage, distribution et combustion devraient être inférieures à 1 % pour que la solution conserve une pertinence en termes d’émissions de Gaz à Effet de Serre (GES)

La solution électrique-hydrogène nécessite trois fois plus d’énergie électrique sur l’ensemble du cycle de production-consommation que la solution électrique-batterie lorsque l’hydrogène vert est produit par électrolyse de l’eau ; les autres procédés de production d’hydrogène (vaporeformage de méthane avec capture et stockage du CO2, thermolyse de biomasse) présentent encore des questions non résolues de

15 Eléments extraits du rapport du GT1 sur l’ERS
16 Positionnement réaffirmé par Mme Von der Leyen lors de l’ouverture de la COP26 à Glasgow : « Enfin, comme toujours, nous allons lancer plusieurs nouvelles actions à la COP26. Avec le président Biden, je vais lancer l’engagement mondial en faveur de la réduction des émissions de méthane. Avec cette initiative, nous nous engageons à réduire les émissions de méthane d’au moins 30 pour cent d’ici à 2030. Si vous regardez les émissions de gaz à effet de serre, le méthane est le levier sur lequel il est le plus facile d’agir. Son pouvoir de réchauffement est 80 fois plus important que celui du CO2 ; il est donc urgent d’agir et nous pouvons faire beaucoup. Je me réjouis donc que 60 pays nous aient rejoints jusqu’à présent. Bien évidemment, nous encourageons d’autres pays à se rallier à cette ambition. »
capacités de stockage du CO₂ et disponibilité de la biomasse. [...] la solution électrique-hydrogène une solution insuffisamment mature pour permettre une décroissance massive du fret routier dès 2030.

L’électrique à batterie pour les PL constitue une solution performante sur le plan des émissions de CO₂, y compris en incluant les émissions liées à la fabrication de la batterie. [...] la diminution de la capacité de chargement des poids lourds (de l’ordre de 3 à 4 t pour le cas d’une batterie correspondant à une autonomie de 700 km) venant renchérir les coûts de production des transporteurs.

Enfin, l’électrique à batterie et ERS permet à la fois une décroissance forte du transport routier de longue distance[...], elle présente un excellent rendement énergétique, une alimentation continue qui ne dégrade pas les conditions d’exploitation des camions et une diminution significative de la taille des batteries des PL faisant de longs trajets (1 200 kWh pour un PL avec une batterie longue autonomie contre 400 kWh pour un PL ERS environ) et peut très fortement réduire le besoin en bornes de recharge.

5.4.2. Hypothèses retenues pour le modèle DRIVE®

5.4.2.1. Choix de modélisation

Après les différences qui ont été soulignées entre le parc de véhicules particuliers et le parc routier du transport de marchandises et les incertitudes liées à l’absence de technologies alternatives aux véhicules Diesel aujourd’hui pour les véhicules poids lourds en particuliers, nous allons essayer de transposer l’approche mise en œuvre pour les véhicules particuliers au transport routier de marchandises.

Dans un premier temps nous essayons d’établir des relations économétriques qui nous permettent de projeter la demande de stock par typologie de véhicules selon les catégories présentées (Figure 102). Plusieurs bases de données ont été consultées pour avoir l’historique des stocks. Nous avons choisi d’estimer les stocks avec un formalisme semblable à celui présenté paragraphe 5.2.1.1, les résultats des calibrations sont présentés Figure 106.

Le résultat de nos projections économétriques basées sur les historiques entre 2000 et 2018 prévoient un taux de croissance globale du stock entre 2020 et 2040 de 19.8 % pour les VUL. Ce résultat prolonge la forte croissance observée pour ce secteur entre 2010 et aujourd’hui, et qui s’explique en partie par la croissance des livraisons liées à l’e-commerce. Avec les hypothèses de croissance de population, de croissance du PIB, cette tendance devrait se poursuivre dans les prochaines décennies, traduisant une desserte locale très active.

Pour les véhicules MFT (Medium Freight Truck) les projections économétriques prévoient une décroissance monotone de cette catégorie avec un taux global de -8.8 % entre 2020 et 2040, prolongeant ainsi la tendance observée sur la dernière décennie.
Pour les poids lourds articulés (HFT pour Heavy Freight Truck), les projections économiques prévoient une légère décroissance du nombre de véhicules entre 2020 et 2040. Clairment sur la Figure 106, nous ne sommes pas en mesure de reproduire les évolutions de cette catégorie sur les 10 dernières années. Ce résultat n’est pas surprenant à la lecture du paragraphe 5.4.1.3, cette taille de véhicules étant directement associée au transport longue distance et à l’import/export ainsi qu’au transit. En utilisant pour notre régression des paramètres reliés uniquement à l’économie française nous ne sommes pas en mesure d’appréhender une dynamique des échanges qui est reliée aux relations que la France entretient avec les pays voisins, ou des dynamiques d’échanges européens pouvant être indépendantes de la France lorsque l’on parle du transit. Le parc des poids lourds articulés présente des conditions d’exploitation différentes selon la typologie des entreprises (CNR, 2019). Par exemple, les chauffeurs des petites entreprises (moins de 20 salariés) parcourent des distances annuelles plus courtes que les chauffeurs des grandes entreprises (plus de 50 salariés), les premières recentrant leur activité sur des dessertes interrégionales alors que les dernières orientent leur activité à l’international.

![Figure 106: courbes enveloppes pour les trois types de véhicules (LCV: light commercial vehicle pour VUL ; MFT Medium Freight Truck ; HFT pour Heavy Freight Truck)](image)

5.4.3. Exemple de résultats pour les VUL

Nous présentons dans ce paragraphe à titre d’illustration des résultats obtenus pour le parc des VUL. Aujourd’hui des fréquentements existent quant à l’adoption de nouvelles technologies dans le secteur des VUL (électriques, gaz), même si ce dernier est toujours dominé par les véhicules Diesel (82,5% du parc) et essence (17% du parc selon le CITEPA\(^7\)). Les véhicules électriques représentaient en 2019 0,5% du parc. Nous ne pouvons donc pas calibrer la loi d’adoption sur les historiques des ventes, et les résultats présentés sont donc très incertains.

La Figure 107 présente un scénario d’évolution du parc des VUL. A partir de 2037 les VUL électriques deviennent majoritaires dans le parc. Nous prévoyons une forte pénétration des VUL électriques après 2025 lorsque des plateformes logistiques auront fait le choix de développer des bornes de recharge. Le stock des VUL essence diminue jusqu’à disparaître entre 2030 et 2035. Le stock de VUL Diesel croît légèrement jusqu’en 2024 pour ensuite diminuer jusqu’en 2050 même si la diminution est plus lente après 2040. Dans ce scénario nous n’envisageons pas d’interdiction des ventes des VUL Diesel après 2035, ce qui permettrait de diminuer efficacement le stock en 2050 qui ici reste à environ 1,8 million de véhicules. Les VUL essence et les VUL Diesel sont remplacés par des VUL thermiques hybrides. Nous envisageons que ce type de motorisation aurait sa place pour assurer les livraisons hors des ZFE.

\(^7\)CITEPA : étude Secten, données accessibles via https://www.citepa.org/fr/secten/
Après 2030, nous faisons apparaître des VUL roulant au gaz. La pénétration de cette technologie se fait plus progressivement dans le parc. Après 2040, nous faisons apparaître des VUL roulant à l’hydrogène. La pénétration de cette technologie se fait assez rapidement. Après 2045 les deux technologies gaz et hydrogène assurent majoritairement la décarbonation du parc, les stocks d’électriques et d’hybrides diminuant alors légèrement. Les VUL roulant au gaz seraient alimentés par du biogaz et nous imaginons la mise en place de partenariats locaux entre plateformes logistiques et sociétés assurant la méthanisation de déchets verts urbains ou agricoles. Le délai pour avoir une méthanisation labellisée sans fuite (<2%) et le délai pour voir des initiatives locales nécessaires au montage de tels projets, justifient la pénétration relativement tardive des VUL roulant au biogaz.

Quant à l’hydrogène, nous estimons comme pour les véhicules légers que les prix des PAC et du combustible deviendront compétitifs après 2045. Nous visualisons ici l’adoption de la technologie, que nous imaginons plus importante que pour les véhicules particuliers parce que des plateformes logistiques pourraient faire le choix d’avoir une production et une distribution locales.

![Diagramme de stocks de VUL](image.png)

Figure 107 : évolution du stock des VUL

La consommation d’énérge associée au parc présenté Figure 107 correspond en 2050 à environ 1 Mtep de biogaz, 2,5 Mtep de gazole et 27 Pj électrique. La consommation de biogaz envisagée est tout à fait réalisable, elle correspond à 100% de la production actuelle. Les 2,5 Mtep de gazole pourraient aisément correspondre à 100% de biogaz. Ainsi le parc des VUL aurait un très bon bilan environnemental (environ -10 Mt CO₂ par rapport à aujourd’hui). Nous préférons ne pas avancer de consommation pour les véhicules hydrogène, les incertitudes concernant les PACs étant trop importantes.

5.4.4. Discussions & conclusions

Le modèle numérique développé pour les véhicules particuliers a pu être transposé aux segments de VUL, segment pour lequel les choix de l’hybridation, de l’électrification apparaissent chez les constructeurs. Le transport de marchandises par VUL est aussi plus proche d’un point de vue de la logistique du transport par véhicules particuliers puisqu’il s’adresse exclusivement à un type de desserte, la desserte locale. Les résultats précédents montrent que l’outil DRIVE est opérationnel pour le segment des VUL.

Pour les poids lourds, la modélisation du parc relève d’autres dynamiques qui ne peuvent pas être aussi simplement abordées avec DRIVE, et surtout enfin l’échelle nationale n’est pas la bonne échelle pour traiter du transport routier de marchandises par poids lourds. Cette question doit être aujourd’hui abordée à l’échelle européenne.
5.5. Références

De Ceuster et al. (2007) TREMOVE: service contract for the further development and application of the transport and environmental.

6. Conclusions et messages principaux

Afin d’analyser les technologies disponibles pour les systèmes de propulsion des véhicules d’aujourd’hui et de demain, IFPEN, dans le cadre du projet E4T 2040 co-financé par l’ADEME, s’est doté de méthodes et d’outils permettant à terme de réaliser des analyses prospectives concernant le secteur du transport. Ces méthodes et outils ont permis d’évaluer, dans le cadre du présent projet, les performances économiques, énergétiques et environnementales des technologies véhicules en fonction des conditions d’usage. La diversité des segments du transport routier (véhicule léger, véhicule utilitaire léger, poids lourds, bus et deux roues) et la prise en compte des évolutions technologiques et économiques à un horizon moyen terme (cible 2040) ont été pris en compte dans l’analyse. Ainsi, à l’aide d’outils de modélisation décrits dans ce rapport, de nouvelles technologies et leurs évolutions ont pu être évaluées permettant d’anticiper les besoins futurs et les orientations stratégiques du secteur.

Les résultats des simulations ont placé les architectures tout-électriques comme étant les plus sobres énergétiquement, en raison des rendements moyens élevés de ses composants et la possibilité de récupérer une grande partie de l’énergie cinétique sur les phases de décélération. L’analyse énergétique a également montré l’intérêt de l’électrification des groupes motopropulseurs, en particulier sur les roulages urbains sur lesquels les « mild hybrid » (ou hybride 48V) présentent des consommations 20% plus faibles que l’équivalent tout-thermique, et au moins 40% plus faibles avec les versions « full hybrid ». Cet intérêt s’amenuise sur les cycles à haute vitesse moyenne, notamment pour les applications lourdes. Les hypothèses retenues pour 2040 font apparaître une réduction d’au moins 30% des consommations énergétiques des véhicules électriques pour l’ensemble des applications. Cette progression s’explique notamment par la réduction de moitié de la masse batterie pour une même capacité embarquée. Ces évolutions amélioreront également la consommation des véhicules hybrides, mais les émissions de CO₂ associées montrent que ces gains ne sont pas suffisants pour passer sous la barre des objectifs de réduction des émissions de CO₂ imposés par l’Union européenne pour 2030, ce qui explique le virage « électrique » pris par les constructeurs automobiles.

Le lot consacré à l’analyse économique a montré l’évolution comparative des coûts de possession dans le temps. Les coûts des véhicules à batterie sont déjà compétitifs sur les véhicules légers type citadin ou compacte, si la capacité de la batterie reste raisonnable. En ce qui concerne les poids lourds, l’équilibre entre le TCO d’une motorisation thermique et électrique à batterie sera atteint entre 2025 et 2035, suivant là encore l’autonomie visée et la capacité de la batterie. La solution électrique à hydrogène (PAC), devrait devenir intéressante un peu plus tardivement, mais elle bénéficiera d’une autonomie plus grande et d’une moindre dépendance aux stations de recharge. Finalement en 2040, les solutions électriques (que ce soit à batterie ou à hydrogène) seront compétitives sur tous les segments de l’étude. L’interdiction de vente des solutions thermiques vers 2035-2040 devraient donc se faire sans augmentation importante du TCO pour les utilisateurs, avec les hypothèses de prix et d’évolution des taxes prisent dans cette étude (notamment la chute importante du prix en station de l’hydrogène).

L’analyse du cycle de vie pour tous les véhicules de l’étude a permis de prendre en compte les impacts environnementaux de façon plus large que ce qui est fait dans les réglementations. Les résultats montrent que les bus sont de loin le mode de déplacement en milieu urbain à privilégier. Pour l’indicateur de réchauffement climatique, les résultats démontrent le potentiel de l’électrification (à batterie ou à pile à hydrogène) combinée à un mix électrique français quel que soit le segment de véhicule et le cycle de conduite. Hormis les véhicules électriques, les véhicules hybrides rechargeables ressortent comme de très bons candidats à la réduction des émissions de GES. De même, l’apport des biocarburants dans les pools carburants pourraient à court et moyen terme apporter une réelle solution à la baisse des émissions GES en France. Pour cela, la réglementation devrait tenir compte de la nature biogénique des émissions de CO₂ provenant de la combinaison des biocarburants. Au regard des autres indicateurs environnementaux (particules, acidification...), le véhicule électrique et le véhicule hydrogène à pile à combustible ne présentent pas le même bilan et ont, pour la plupart des indicateurs, des impacts plus élevés que les véhicules thermiques, utilisant notamment des biocarburants.

Enfin, la dernière partie de l’étude a permis d’intégrer les résultats des trois premiers lots dans le modèle de parc DRIVEn®. Les résultats montrent que même dans le cas du scénario le plus favorable à la vente de véhicule électrifié, les objectifs du Green Deal (90% d’émissions de CO₂ du parc en 2050) ne sont pas atteints. En effet les émissions de CO₂ seront égales en 2050 à 21 Mt. Pour rappel elles étaient de 70 Mt en 1990. Il faut ajouter à ce scénario l’interdiction des ventes de véhicules thermiques.
en 2035 pour se rapprocher de l’objectif. Dans ce dernier scénario, les émissions de CO₂ atteindront 11,4 Mt en 2050. Avec des politiques de soutien à l’autopartage, et/ou l’utilisation accrue des biocarburants, l’objectif du Green Deal pourrait ainsi être tenu.

L’étude montre également qu’une baisse de la demande de véhicules due à un changement de comportements (-10% de mobilité en 2040) n’a que peu de conséquences sur la décarbonation du secteur. En effet, cette baisse de la demande de mobilité ralentit le renouvellement du parc (les véhicules devenant moins vite obsolètes) et freine ainsi la pénétration des véhicules bas carbone. Enfin, l’objectif récent fixé par la Commission Européenne « Fit for 55 », à savoir une baisse des émissions de CO₂ de 55% dès 2030, est difficilement atteignable. En moins d’une décennie il apparaît difficile de changer suffisamment le parc français pour valider cet objectif. À court terme l’incorporation de biocarburants (directement utilisables par la grande majorité des véhicules du parc) et un changement de réglementation (prénant en compte l’origine biogénique du CO₂ émis par la combustion des biocarburants) pourraient améliorer ce constat.

Les conclusions de ce projet permettront d’élaborer des recommandations portant sur les choix technologiques à faire pour répondre aux besoins de mobilité d’ici à 2040, en s’appuyant sur des critères économiques, énergétiques, environnementaux et également en prenant en compte les futures réglementations nationales (SNBC) ou européennes (Fit for 55 et Green deal).
7. Annexe

7.1. Table des figures

Figure 1 : Répartition sectorielle des émissions de GES en France en 2019 – source CITEPA (2021).................10
Figure 2 : Evolution des émissions de CO2 du secteur Transport et de tous les secteurs agrégés en France (base 100 en 1990) – source CITEPA (2021)..10
Figure 3 : Historique et projection des émissions du secteur des transports entre 1990 et 2050 (en MTCOeq) (Ministère de la transition écologique solidaire, 2020)...11
Figure 4 : Schéma de l’articulation des lots du projet E4T 2040...12
Figure 5 : Évolution du ratio massique “pack” sur “cellules” fonction de la capacité de la batterie.............18
Figure 6 : Cartographie de rendement moteur thermique, cylindré 1.3i, applications « hybride », horizon 2040...19
Figure 7 : Détermination de la masse roulante véhicule simulée...20
Figure 8 : Masses roulantes [kg] des VL pour 2020 et 2040..22
Figure 9 : Masses roulantes [kg] des VUL pour 2020 et 2040...23
Figure 10 : Masses roulantes [kg] des PL pour 2020 et 2040...24
Figure 11 : Exemple de “sketch” de simulateur véhicule pour une architecture hybride parallèle......26
Figure 12 : Comparaison des simulations IFEN et mesures Argonne concernant les consommations H2 du véhicule Toyota Mirai...27
Figure 13 : Exploitation des outils Copert pour l’obtention des émissions moyennes sur cycles...........28
Figure 14 : Profils de vitesse pour les VL et VUL...28
Figure 15 : Profils de vitesse pour les « 2 roues 125cc »...29
Figure 16 : Profils de vitesse pour les poids lourds..29
Figure 17 : Profils de vitesse pour les bus de ville...30
Figure 18 : Consommations énergétiques de certains véhicules du segment C en pour les 4 cycles d’étude...30
Figure 19 : Consommations énergétiques des véhicules électriques et PAC...31
Figure 20 : Consommations énergétiques du segment VUL pour les 4 cycles d’étude.........................31
Figure 21 : Consommations énergétiques des “2 roues”..32
Figure 22 : Consommations énergétiques des poids lourds de livraison...32
Figure 23 : Consommations énergétiques des PL “long routier”...33
Figure 24 : Consommations énergétiques des bus de ville...33
Figure 25 : Consommations énergétiques des véhicules du segment C sur WLTC..........................34
Figure 26 : Emissions de CO2 à l’échappement pour les véhicules du segment C sur WLTC...........34
Figure 27 : Consommations énergétiques VUL sur cycle WLTC...35
Figure 28 : Consommations énergétiques des PL livraison sur cycle extra urbain...........................35
Figure 29 : Consommations énergétiques des PL “long routier” sur cycle autoroutier.........................36
Figure 30 : Exemple des configurations étudiées dans E4T 2040...40
Figure 31 : Représentation de l’approche bottom-up utilisée pour déterminer le prix de vente des véhicules..41
Figure 32 : Scénarios de prix des batteries (pack complet) entre 2020 et 2050 (source : European Climate Foundation, 2019)...42
Figure 33 : Evolution du prix des énergies pour les particuliers dans le calcul du TCO (en euro constant – prix à la pompe)..43
Figure 34 : Détails des étapes de calcul pour arriver au TCO...44
Figure 35 : TCO d’un véhicule type citadine en 2021 selon le cycle de conduite urbain ou WLTC........46
Figure 36 : Analyse de sensibilité sur le kilométrage annuel en 2020 (cycle WLTC).................................46
Figure 37 : TCO d’un véhicule citadine en 2020 et en 2040 – cycle WLTC..47
Figure 38 : TCO d’un véhicule type compacte en 2020 pour 12500km/an – cycle WLTC....................48
Figure 39 : Analyse de sensibilité du kilométrage annuel d’un segment C..48
Figure 40 : TCO d’un véhicule type compacte en 2040 pour 12500 km/an – cycle WLTC....................48
Figure 41 : Evolution temporelle des TCO pour le segment C – 12500 km/an..49
Figure 42 : Analyse de sensibilité sur les prix des vecteurs énergétiques (essence, électricité, hydrogène) pour les TCO d’un véhicule de segment C en 2040..50
Figure 43 : TCO d’un segment D en 2020 et en 2040 – Cycle WLTC – 10 ans de possession..............51
Figure 44 : TCO d’un VUL en 2020 et en 2040 – Cycle WLTC – 12 ans de possession.....................52
Figure 45 : TCO d’un autobus en 2020 et en 2040 – Cycle RATP – 12 ans de possession – 40 000km/an. 52
Figure 46 : Analyse de sensibilité sur les prix des vecteurs énergétiques (gazole, GNV, électricité, hydrogène) pour les TCO du bus en 2020 et 2040...53
Figure 47 : TCO d’un PL 12t en 2020 et en 2040 – Cycle Carrefour City – 12 ans de possession........54
Figure 48: Analyse de sensibilité sur le kilométrage annuel moyen d’un PL 12t pour les TCO en 2020 et 2040...54
Figure 49: Analyse de sensibilité sur les prix des vecteurs énergétiques (gazole, GNV, électricité, hydrogène) pour les TCO en 2040...55
Figure 50: TCO d’un PL 40t en 2020 et en 2040 – Cycle France Route – 12 ans de possession..........................56
Figure 51: Analyse de sensibilité sur le kilométrage annuel moyen d’un PL 40t pour les TCO en 2020 et 2040...56
Figure 52: Analyse de sensibilité sur les prix des vecteurs énergétiques (gazole, GNV, électricité, hydrogène) sur les TCO en 2040...57
Figure 53: TCO d’un 125cc en 2020 et 2040 pour 5000km/an – cycle WMTC...57
Figure 54: Analyse de sensibilité sur le kilométrage annuel du 125cc...57
Figure 55: Etapes considérées dans le périmètre : WtW incluant le cycle de vie véhicule..........................68
Figure 56: Impacts potentiels sur le changement climatique pour les véhicules du segment A. Cycles de conduite : urbain, route, autoroute et WLTC. Horizons temporels 2020 et 2040 (15 ans 10,000 km/an).71
Figure 57: Impacts potentiels sur le changement climatique pour les véhicules du segment C. Cycles de conduite urbain, route, autoroute et WLTC. Horizon temporel 2020 (10 ans 12,500 km/an)..........................73
Figure 58: Impacts potentiels sur le changement climatique pour les véhicules du segment C. Cycles de conduite route. Horizons temporels 2020 et 2040 (10 ans 12,500 km/an)...73
Figure 59: Impacts potentiels sur le changement climatique pour les véhicules du segment C. Cycles de conduite route. Horizon temporel 2020. Analyse de sensibilité durée de possession...74
Figure 60: Impacts potentiels sur le changement climatique pour les véhicules du segment D. Cycles de conduite route. Horizon temporel 2020. Analyse de sensibilité durée de possession...75
Figure 61: Impacts potentiels sur le changement climatique pour les bus. Cycles de conduite RATP (données ADEME). Horizons temporels 2020 et 2040 (12 ans 40,000 km/an)...76
Figure 62: Impacts potentiels sur le changement climatique pour les poids lourds livraison. Cycles de conduite « carrefour city ». Horizons temporels 2020 et 2040 (12 ans 31,000 km/an)...77
Figure 63: Impacts potentiels sur le changement climatique pour les poids lourds routier. Cycles de conduite « France route ». Horizons temporels 2020 et 2040 (12 ans 62,500 km/an)...78
Figure 64: Impacts potentiels sur le changement climatique pour les deux roues. Cycles de conduite : Paris et banlieue (données ADEME). Horizons temporels 2020 et 2040...78
Figure 65: Impacts potentiels sur le changement climatique pour les VUL. Cycles de conduite : WLTC. Horizons temporels 2020 et 2040 (12 ans 16,200 km/an)...79
Figure 66: Impacts potentiels sur la formation d’ozone photochimique pour les véhicules du segment D. Cycles de conduite : route. Horizon temporel 2020 (10 ans 15,000 km/an)...80
Figure 67: Impacts potentiels sur l’acidification pour les véhicules du segment D. Cycles de conduite : route. Horizon temporel 2020 (10 ans 15,000 km/an)...81
Figure 68: Impacts potentiels sur l’eutrophisation (freshwater) pour les véhicules du segment D. Cycles de conduite : route. Horizon temporel 2020 (10 ans 15,000 km/an)...82
Figure 69: Impacts potentiels sur l’eutrophisation terrestre pour les véhicules du segment D. Cycles de conduite : route. Horizon temporel 2020 (10 ans 15,000 km/an)...83
Figure 70: Impacts potentiels sur les particules fines pour les véhicules du segment D. Cycles de conduite : route. Horizon temporel 2020 (10 ans 15,000 km/an)...84
Figure 71: Impacts potentiels sur l’épuisement des ressources (abiotic depletion potential) pour les véhicules du segment D. Cycles de conduite : route. Horizon temporel 2020 (10 ans 15,000 km/an)...85
Figure 72: Impacts potentiels sur la radioactivité (ionising radiation) pour les véhicules du segment D. Cycles de conduite : route. Horizon temporel 2020 (10 ans 15,000 km/an)...86
Figure 73: Analyse croisée du TCO et des émissions CO2 (WTW) pour le segment C (à gauche) et le bus (à droite)..88
Figure 74: Leviers clés pour décarboner les transports, utilisés dans la décomposition des émissions (Bigo, 2020)...92
Figure 75: Schéma fonctionnel des entrées-sorties du modèle DRIVErs...93
Figure 76: Schéma bilan de l’organisation des calculs pour chaque pas de temps...94
Figure 77: Le modèle logit multinomial emboîté...96
Figure 78: Ensemble des scénarios contextuels...97
Figure 79: Stations de recharge publique en France – source : chargemap.com (2021)...98
Figure 80: Hypothèses d’évolution du prix du baril de pétrole – AIE (2019)...99
Figure 81: Hypothèses de consommations en cycle urbain de véhicules moyenne gamme essence et Diesel...99
Figure 82: Ensemble des scénarios de politiques publiques...100
Figure 83: Hypothèses de primes à l’achat de véhicule électrique ou PHEV en France...100
Figure 84: Hypothèses prises pour la valeur de la taxe carbone en France à l’horizon 2040...101
Figure 85: Hypothèses d’évolution de la taxe sur le gazole et l’essence à l’horizon 2040...101
Figure 86: Evolution du prix de l’essence et du gazole dans le scénario de référence en France à l’horizon 2040...102
Figure 87: Arbre des scénarios pour l’analyse du transport via DRIVErs...102
Figure 88: évolution temporelle des ventes et des stocks par technologie pour les scénarios E1 (lignes en pointillés) et C8 (lignes continues)..104
Figure 89: évolution temporelle des émissions de CO₂ en TTW du parc (à gauche) et par technologie (à droite) pour les scénarios E1 (lignes en pointillés) et C8 (lignes continues)..104
Figure 90: évolution temporelle par technologie des émissions de NOx en TTW (à gauche) et des PM (à droite), pour les scénarios E1 et C8..105
Figure 91: évolution temporelle des ventes et des stocks par technologie pour les scénarios C1 et C8.105
Figure 92: calendrier de la consommation de carburants associées aux différentes technologies composant le parc. Les consommations associées au scénario C1 et C8 sont représentées. Pour chaque carburant, il est possible de distinguer la part fossile et la part renouvelable (nommée bio sur la figure) ..106
Figure 93: évolution temporelle des émissions de CO₂ en TTW du parc (à gauche) et par technologie (à droite) pour les scénarios C1 et C8..107
Figure 94: évolution temporelle des ventes et des stocks par technologie pour les scénarios C8 avec et sans interdiction de vente des véhicules thermiques après 2035...108
Figure 95: évolution temporelle des émissions de CO₂ en TTW du parc (à gauche) et par technologie (à droite) pour les scénarios C8 avec et sans interdiction de vente des véhicules thermiques après 2035.108
Figure 96: -10% sur demande de véhicules en 2040 (changement de comportements, courbe en traits pointillés) ..109
Figure 97: évolution temporelle des ventes et des stocks par technologie pour le scénario C8 selon les deux courbes de demande de véhicules présentées Figure 96..110
Figure 98: évolution temporelle des émissions de CO₂ en TTW du parc (à gauche) et par technologie (à droite) pour le scénario C8 selon les deux courbes de demande de véhicules présentées Figure 96........110
Figure 99: bilan économique des politiques publiques...112
Figure 100: Consommation d’énergie et émissions de GES des transports en 2015, 2030 et 2050 hypothèses retenues au 1er janvier 2020 par la Stratégie Nationale Bas Carbone en métropole (MTF, 2020)..113
Figure 101: Trois types de véhicules ont été définis..115
Figure 102: réseau central européen (https://op.europa.eu/webpub/eca/special-reports/core-road-network-9-2020/fr)..117
Figure 103: Proposition de développement d’un réseau ERS à l’échelle de la France en accord avec le réseau central européen (extrait du rapport GT1 ERS)..117
Figure 104: données nécessaires et collectées...119
Figure 105: courbes enveloppes pour les trois types de véhicules (LCV: light commercial vehicle pour VUL ; MFT Medium Freight Truck ; HFT pour Heavy Freight Truck)...120
Figure 106: évolution du stock des VUL..121
L’ADEME EN BREF
À l’ADEME - l’Agence de la transition écologique -, nous sommes résolument engagés dans la lutte contre le réchauffement climatique et la dégradation des ressources.

Sur tous les fronts, nous mobilisons les citoyens, les acteurs économiques et les territoires, leur donnons les moyens de progresser vers une société économe en ressources, plus sobre en carbone, plus juste et harmonieuse.

Dans tous les domaines - énergie, économie circulaire, alimentation, mobilité, qualité de l’air, adaptation au changement climatique, sols... - nous conseillons, facilitons et aidons au financement de nombreux projets, de la recherche jusqu’au partage des solutions.

À tous les niveaux, nous mettons nos capacités d’expertise et de prospective au service des politiques publiques.

L’ADEME est un établissement public sous la tutelle du ministère de la Transition écologique et du ministère de l’Enseignement supérieur, de la Recherche et de l’Innovation.

LES COLLECTIONS DE L’ADEME

FAITS ET CHIFFRES
L’ADEME réfèrent : Elle fournit des analyses objectives à partir d’indicateurs chiffrés régulièrement mis à jour.

CLÉS POUR AGIR
L’ADEME facilitateur : Elle élabore des guides pratiques pour aider les acteurs à mettre en œuvre leurs projets de façon méthodique et/ou en conformité avec la réglementation.

ILS L’ONT FAIT
L’ADEME catalyseur : Les acteurs témoignent de leurs expériences et partagent leur savoir-faire.

EXPERTISES
L’ADEME expert : Elle rend compte des résultats de recherches, études et réalisations collectives menées sous son regard

HORIZONS
L’ADEME tournée vers l’avenir : Elle propose une vision prospective et réaliste des enjeux de la transition énergétique et écologique, pour un futur désiré à construire ensemble.
E4T 2040

Elargie à de nouvelles familles de véhicules, l’étude finalisée début 2022 compare différentes filières énergétiques et technologiques.
Si, depuis sa finalisation, le contexte mondial a largement bousculé certaines hypothèses (notamment sur le prix des énergies), elle permet d’éclairer les voies à privilégier pour décarboner la mobilité, tout en restant économiquement compatibles avec une diffusion large.
En complément, une estimation de l’impact de divers scénarios de politiques publiques (aides de type bonus écologique, taxation spécifique sur les carburants pétroliers, amplitude de taxation du carbone) sur les émissions de carbone du parc automobile a été menée. Les résultats précédents (énergétiques, économiques et environnementaux) ont été introduits dans un modèle de comportement d’achat automobile, permettant de simuler l’évolution de la composition technologique et de l’activité du parc automobile, et donc d’évaluer l’évolution temporelle de ses émissions.

Les progrès techniques conjugués à la baisse des coûts de solutions électriques (notamment à batterie) vont permettre à ces technologies de pénétrer le marché. D’abord rentables sur les véhicules légers, ces technologies vont peu à peu intégrer le parc des bus et poids lourds, avec une parité économique attendue entre 2025 et 2040.

L’Analyse du Cycle de Vie montre qu’avec le mix électrique français les véhicules électriques à batterie présentent des gains très nets d’émissions GES, les émissions liées à la production des batteries ayant tendance à diminuer d’ici 2040 (relocalisation en Europe de leur production à cet horizon). Ce constat est plus contrasté avec les technologies pile à combustible.